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Abstract: For linear systems, we show that the constraint known as Bode’s
sensitivity integral has an information theoretic interpretation in terms of the
difference in the entropy rates between the input and output of the systems. We use
this interpretation to show that, if the open loop system is globally exponentially
stable, this difference is zero. For nonlinear systems that are not stable, we start
to investigate the method to calculate this difference using new results on the
inner/outer factorization of nonlinear systems.
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1. INTRODUCTION

In his classical monograph (Bode, 1945), Bode
showed 2 that for a single-input single-output,
stable, open loop system L(z), the sensitivity
function S(z) = 1/(1 + L(z)) must satisfy∫ ∞

0

log |S(eiω)| dω = 0 (1)

It is well known that this integral constraint has
important practical implications (Freudenberg
and Looze, 1988; Doyle et al., 1992). For example,
consider the system depicted in Fig. 1. Here, the
system L includes both the plant P (z) and the
controller C(z). If one wishes to keep the tracking
error, |e(eiω)|, below ε < 1 for reference signals
with frequency content ω ∈ [0, Ω], the sensitivity
function must satisfy

ln |S(eiω)| < ln ε < 0, ∀ω ∈ [0, Ω]

1 This work was supported in part by NSF, under grant
ECS-9800057
2 Bode’s work dealt with continuous-time systems, here
we present the corresponding discrete-time results.
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Fig. 1. Tracking problem

However, according to the constraint imposed
by (1), it must follow that ln |S(eiω)| > 0, for some
ω �∈ (Ω, π). In particular,

0 ≤ (− ln ε)Ω

≤ (π − Ω) sup
ω∈(Ω,π)

ln |S(eiω)|

≤ (π − Ω) ln ‖S‖∞
Thus:

‖S‖∞ ≥ exp
(

Ω
π − Ω

(− ln ε)
)

Hence, a smaller ε or a larger bandwidth Ω will
increase the corresponding values of |S(eiω)| in
ω �∈ [0, Ω].

Bode’s result has been generalized in many
ways (Freudenberg and Looze, 1988; Seron et
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al., 1997). For arbitrary open loop multivariable
systems, Freudenberg and Looze, who showed
that if L(z) has unstable poles {pi}, then the
integral is now equal to:∫ π

0

ln | detS(eiω)| dω =
∑

(− ln |pi|) > 0 (2)

The appearance of the unstable poles (i.e. |pi| <
1) in the right-hand side of (2) serves only to
worsen the bandwidth and magnitude tradeoffs
mentioned with regard to (1).

A generalization of Bode’s integral relation to
a class of discrete-time, nonlinear systems was
considered in (Iglesias, 2001a) for nonlinear min-
imum phase systems. What makes possible this
extension is the connection that exists between
the logarithmic integral found in Bode’s relation-
ship and an information theoretic entropy. This
allows for a time-domain interpretation to (1).
This type of extension was first considered for lin-
ear time-varying systems in (Iglesias, 2001b; Igle-
sias, 2002). In this paper we build upon the results
of (Iglesias, 2001a). In particular, we consider
the more general case where the system is not
minimum phase and present tentative result. To
do this we employ some new results on nonlin-
ear inner/outer factorizations, building upon ear-
lier work of Ball and co-workers (Ball and Hel-
ton, 1992; Ball and van der Schaft, 1996).

We note an alternative approach to extend-
ing Bode’s integral results to nonlinear systems
in (Seron et al., 1999).

2. PRELIMINARIES

In this section we first demonstrate how Bode’s
integral can be recast in information theoretic
terms using the concept of entropy rates.

Consider a random variable x ∈ R
m. If x can only

take a finite number of values, say x(1), . . . , x(r),
then the entropy of x is defined as

H(x) := −
r∑

i=1

pi ln pi

where pi is the probability that x = x(i). If the
random variable is a continuous-type one, this can
be extended to

H(x) := −
∫

Rm

f(x) ln f(x) dx (3)

where f(x) is the probability density function of
x, and by definition we take f(x) ln f(x) = 0 if
f(x) = 0. Now consider a continuous-type random
variable xk as a function of time. The conditional
entropy of order l is defined as

� F �xk yk

Fig. 2. General input-output system

H(xk|xk−1, . . . , xk−l)

:= −
∫

Rm

f(xk|xk−1, . . . , xk−l)

ln f(xk|xk−1, . . . , xk−l) dxk

This is a measure for the uncertainty about its
value at time k under the assumption that its l
most recent values have been observed. By letting
l go to infinity, the conditional entropy of xk is
defined as

Hc(xk) := lim
l→∞

H(xk|xk−1, . . . , xk−l)

assuming the limit exists. The conditional entropy
is a measure of the uncertainty about the value
of x at time k under the assumption that its
entire past is observed. We point out that, for a
stationary signal xk, the conditional entropy and
the entropy rate

H̄(x) = lim
m→∞

1
m

H(x1, . . . , xm)

are the same.

2.1 Conditional entropy of a linear system

The following result, originally in (Kolmogorov,
1956), is well known; see (Papoulis, 1984)
Lemma 1. Consider the system depicted by Fig-
ure 2 where F (z) is the transfer function of a sta-
ble, discrete-time, linear time-invariant system.
The conditional entropy of the output yk equals:

Hc(yk) = Hc(xk) +
1
2π

∫ ∞

−∞
ln |F (eiω)| dω

We also note that
Corollary 2. If, in addition, F (z) is minimum
phase and limz→∞ F (z) = 1 then Hc(yk) =
Hc(xk).

Suppose that F (z) = S(z) where S(z) is the sen-
sitivity function, and S(z) = (1 + L(z))−1 where
L(z) represents the loop transfer function. In this
case, the integral of Lemma 1 is referred to as
Bode’s integral. We note as well that the mini-
mum phase requirement of Corollary 2 amounts
to requiring that the loop transfer function is
stable, since the zeros of S(z) are the poles of L(z).
Morever, the requirement that limz→∞ S(z) = 1
is equivalent to requiring that L(z) be strictly
proper.

Because of this relationship, let us denote
1
2π

∫ π

−π

ln |S(eiω)| dω = Hc(ek)−Hc(wk) =: B(S)

(4)



where S = w �→ e. The advantage of the
righthand-most term in (4) is that, as it involves
time-domain terms, it is well defined even for
systems that do not admit a transfer function. In
the next section we look at using this connection
to consider nonlinear systems.

2.2 Nonlinear Systems

Suppose that we consider a general discrete-time
system with input ek and output zk whose dy-
namics are governed by the following nonlinear
difference equation:

ΣL :=

{
xk+1 = A(xk) + B(xk)ek

zk = C(xk)
(5)

and suppose that uk is obtained as unity feedback

ek = wk − zk

resulting in the closed-loop system

ΣS :=

{
xk+1 = A×(xk) + B(xk)wk

ek = −C(xk) + wk

(6)

where A×(xk) = A(xk) − B(xk)C(xk).

We note that the dynamics of ΣL includes both
the controller and the plant. Of course, we assume
that the controller has been chosen so that the
closed-loop system is stable. Precisely, we assume
that x0 is globally exponentially stable equilib-
rium point of xk+1 = A×(xk) and that C(x0) = 0.

Definition 3. The system ΣS is minimum phase
if for the inverse system

ΣS−1 :=
{

xk+1 = A(xk) + B(xk)ek

wk = C(xk) + ek
(7)

x0 is also globally exponentially stable equilibrium
point of xk+1 = A(xk), B(x) is bounded, C(x) is
Lipschitz.

The requirement on B(x) and C(x) is to ensure
the l∞ input-output stability of both ΣS and ΣS−1

(Lemma 5.5 in (Khalil, 1996)).

In order to deal with infinite dimensional input-
output map, the concepts of fading memory and
nonlinear moving average theorem are needed to
truncate the map into finite dimension.

Definition 4. (Boyd and Chua, 1985) A time
invariant operator N : l∞ → l∞ is said to
have fading memory on a subset K of l∞

if there is a decreasing sequence w : Z+ →
(0, 1], limk→∞ w(k) = 0 , such that for each
u ∈ K and ε > 0 there is a δ > 0 such that for all
v ∈ K

sup
k≤0

|u(k)−v(k)|w(−k) < δ → |Nu(0)−Nv(0)| < ε

Theorem 5. (Boyd and Chua, 1985) (NLMA
Approximation Theorem): Let ε > 0, K be any
ball in l∞, and suppose N is any time invariant
operator: l∞ → l∞ with fading memory on K.

Then there is a polynomial p : R
M → R such that

for all u ∈ K ∥∥∥Nu − N̂u
∥∥∥ ≤ ε

where N̂ is the NLMA operator given by

N̂uk := p(uk, · · · , uk−M+1)

2.3 Entropy Formula

Lemma 6. (Papoulis, 1984) If

yi = gi(x1, · · · ,xn) i = 1, · · · , n

are n functions of the random variables xi, then

H(y1, · · · ,yn) ≤H(x1, · · · ,xn)
+ E{log |J(x1, · · · ,xn)|}

where J(x1, · · · ,xn) is the Jacobian of the above
transformation. Equality holds iff the transforma-
tion has a unique inverse.

Lemma 7. (Papoulis, 1984) For random vari-
ables x1, · · · ,xn, we have

H(x1, · · · ,xn) ≤ H(x1) + · · · + H(xn)

with equality, if the xi’s are independent.

3. MAIN RESULTS: MINIMUM PHASE CASE

We now study the case that the system is mini-
mum phase.

Theorem 8. Suppose that the system ΣS given
by (6) is minimum phase, and that both ΣS and
ΣS−1 have fading memory. Then B(S) = 0.

Proof. The system we are discussing has fading
memory. By Theorem 5, such a system has a
polynomial approximation with arbitrarily small
error, and this approximation is given by

Ŝek = p(ek, · · · , ek−N ) (8)

where p is a polynomial R
N+1 → R.

Thus the Jacobian of the approximated transfor-
mation is lower triangular with coefficients

Ji,j(ek, · · · , ek−N ) =
∂p(ek, · · · , ek−N )

∂ek−j+i
i > j

Ji,j(ek, · · · , ek−N ) = 0 i < j

Ji,i = 1



We apply Lemma 6 to the following transforma-
tion

wn−k = p(en−k, · · · , en−k−N ), 0 ≤ k ≤ m − N

yn−k = p(en−k, · · · , en−m, 0, · · · ), m − N ≤ k ≤ m

we have that

H(wn, · · · ,wn−m+N ,yn−m+N−1, · · · ,yn−m)
=H(en, · · · , en−m) + E{log |J(en, · · · , en−m)|}
=H(en, · · · , en−m)

By Lemma 7

H(wn, · · · ,wn−m+N ,yn−m+N−1, · · · ,yn−m)

≤H(wn, · · · ,wn−m+N) +
N∑

k=1

H(yn−m+N−k)

Now, divide both sides by m+1 and take the limit
as m goes to infinity, then

lim
m→∞

1
m + 1

·
H(wn, · · · ,wn−m+N ,yn−m+N−1, · · · ,yn−m)

≤ lim
m→∞

m − N + 1
m + 1

H(wn, · · · ,wn−m+N )
m − N + 1

+ lim
m→∞

1
m + 1

N∑
k=1

H(yn−m+N−k)

= H̄(w)

We have

lim
m→∞

1
m + 1

N∑
k=1

H(yn−m+N−k) = 0

because all the items in the finite sum are finite
numbers.

Thus,
H̄(w) ≥ H̄(e) (9)

Since the system is minimum phase, its inverse
system is also causal, stable and has fading mem-
ory, with wn as input and en as output. A similar
derivation as (9) gives

H̄(e) ≥ H̄(w) (10)

By (9) and (10) we have H̄(w) = H̄(e)

The fading memory requirement was used so as to
limit the past input contributions on the output.
It is natural to ask what constraints on A(x),
B(x), C(x) and w would satisfy this fading mem-
ory requirement. This will be the task of future
research.

4. NONLINEAR INNER-OUTER
FACTORIZATION

Let G(z) be a transfer matrix of linear discrete

time system and let the realization G =
[

A B
C D

]
be minimal. It is well known (Khargonekar and

Sontag, 1982) that a stabilizing state feedback
gain F can yield a right coprime factorization (rcf)
G = NM−1 over RH∞, where

[
M
N

]
=


 A + BF BW

F
C + DF

W
DW


 (11)

and W is any nonsigular matrix. If G is stable,
then M above is an outer hence the factorization
G = N(M−1) is an inner-outer factorization.

For a nonliner system ΣG which is affine in its
input

ΣG =

{
xk+1 = A(xk) + B(xk)uk

yk = C(xk) + D(xk)uk

(12)

where A, B, C and D are smooth mappings
with appropriate dimensions. we have the similar
factorization G = N ◦ M−1.
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Fig. 3. Nonlinear Factorization

With the input output signals illustrated in the
above figure, we can write their state space repre-
sentation.

ΣM =




pk+1 = [A(pk) + B(pk)F (pk)]
+B(pk)W (pk)vk

uk = F (pk) + W (pk)vk

(13)

ΣN =




qk+1 = [A(qk) + B(qk)F (qk)]
+B(qk)W (qk)vk

yk = [C(qk) + D(qk)F (qk)]
+D(qk)W (qk)vk

(14)

Definition 9. A nonlinear system Σ is lossless
with respect to the supply rate 1

2uT
k uk − 1

2yT
k yk if

there exists a function V (xk) ≥ 0 (the storage
function) such that

V (xk+1) − V (xk) = 1
2uT

k uk − 1
2yT

k yk

and V (0) = 0.

This definition serves as a discrete time analogue
of losslessness for continuous system in (Ball and
van der Schaft, 1996).

The choice of this storage function leads a lossless
global exponentially stable system to an input-
output conservative system, thus an inner. Sup-
pose sequence {y1, y2, · · · } ∈ Lm

2 is the output re-
sponding to an input sequence {u1, u2, · · · } ∈ Lp

2,
then



n∑
k=0

yT
k yk =

n∑
k=0

[uT
k uk + 2V (xk+1) − 2V (xk)]

=
n∑

k=0

uT
k uk + 2V (xn+1)

Global exponentially stability implies that

lim
n→∞xn+1 = 0

hence
lim

n→∞V (xn+1) = 0

It follows that
∞∑

k=0

yT
k yk =

∞∑
k=0

uT
k uk

and, therefore

〈y, y〉Lp
2

= 〈u, u〉Lm
2

which defines input-output conservativeness of the
system.

Based on this definition, we have the following
result which mirrors (Byrnes and Lin, 1994, The-
orem 2.6),
Theorem 10. A system G of the form (12) is
lossless if and only if there exist a C2 storage
function V ≥ 0, V (0) = 0 such that,

V (A(xk)) = V (xk) − 1
2CT (xk)C(xk) (15)

∂V (α)
∂α

∣∣∣
α=A(xk)

B(xk) = −CT (xk)D(xk) (16)

BT (xk)
∂2V (α)

∂α2

∣∣∣
α=A(xk)

B(xk) = I −DT (xk)D(xk)

(17)
and V (A(xk) + B(xk)uk) is quadratic in uk.

By setting

V (xk) = 1
2xT

k Xxk

A(xk) = Axk, B(xk) = B

C(xk) = Cxk, D(xk) = D

we can recover the losslessness conditions (Zhou
et al., 1996, Corollary 21.19) of the linear case. In
particular, note that

(15) ⇒ 1
2 (Axk)T X(Axk)

= 1
2xT

k Xxk − 1
2 (Cxk)T (Cxk)

⇒AT XA + CT C − X = 0

(16) ⇒αT X
∣∣∣
α=Axk

B = −(Cxk)T D

⇒AT XB + CT D = 0

and
(17) ⇒ BT XB = I − DT D

The main result of this section now follows.
Theorem 11. A stable discrete-time nonlinear
system having a state space representation

ΣG =

{
xk+1 = A(xk) + B(xk)uk

yk = C(xk) + uk

where uk ∈ R
m and yk ∈ R

m, A, B and C are
smooth mappings with appropriate dimensions,
has an inner-outer factorization where the outer
factor Φ has state-space representation

ΣΦ :

{
xk+1 = A(xk) + B(xk)uk

yk = −Z1/2(xk)F (xk) + Z1/2(xk)uk

(18)
where

Z(x) = I + BT (x)
∂V 2(α)

∂α2

∣∣∣
α=A(x)+B(x)F (x)

B(x)

F (x) is a solution to

∂V (α)
∂α

∣∣∣
α=A(x)+B(x)F (x)

= −[C(x)+F (x)]T Z−1/2(x)

with A(x) + B(x)F (x) is stable, and V (x) ≥ 0
satisfies

V (A(x) + B(x)F (x)) +
1
2
‖C(x) + F (x)‖2 = V (x)

V (0) = 0

In order to employ theorem 8, the fading memory
requirement is now a obstacle – we don’t know
whether the outer factor has fading memory given
that the system itself has fading memory. we
conjecture that it is true because the inner factor
preserve the norm. If it is the case, we have the
following results.
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Fig. 4. Inner-Outer Factorization

Theorem 12. Suppose that the system ΣS given
by (6) is globally exponentially stable, has fading
memory, and A, B and C are smooth mappings
with appropriate dimensions, then

B(So) := Hc(vk) −Hc(ek)

= lim
m→∞

1
2m

E
{ m∑

l=0

ln | detZ(xk−l)|
}

where the signals is defined as in Figure 4 and

Z(x) = I + BT (x)
∂V 2(α)

∂α2

∣∣∣
α=A(x)+B(x)F (x)

B(x)

F (x) is a solution to

∂V (α)
∂α

∣∣∣
α=A(x)+B(x)F (x)

= −FT (x)Z−1/2(x)

with A(x) + B(x)F (x) is stable, and V (x) ≥ 0
satisfies

V (A(x) + B(x)F (x)) +
1
2
‖F (x)‖2 = V (x),

V (0) = 0



Proof. Only note that the Jacobian of the outer
factor is just the product of Z−1/2(xl) for all
l ≤ k.

Corollary 13. If V is quadratic, then B(So) > 0.

5. DISCUSSION

The result in Theorem 8 corresponds to Bode’s
original result. It states that, irrespective of the
choice of controller, and provided that the loop
system L is stable so that S is minimum phase, the
uncertainty cannot be reduced. In fact, one can see
that Bode’s original result is not a consequence
of the linearity of feedback, but of causality. In
the general case, where the loop gain is not sta-
ble so that we can only make S stable, we have
shown how to factor the sensitivity operator S
into minimum phase part and all pass part. We
have shown that the entropy difference caused
by the minimum phase part is nonnegative when
the system satisfies fading memory requirements.
Further work are needed, however. First: to char-
acterize the difference in entropy rates between
the system input and the output of the inner
factor. This latter part is zero for linear systems,
and we conjecture the same for nonlinear systems.
Second is to investigate further the conditions for
a minimum phase system to have fading memory.

REFERENCES

Ball, J.A. and A.J. van der Schaft (1996). J-inner-
outer factorization, J-spectral factorization,
and robust control for nonlinear systems.
IEEE Trans. Automat. Control 41(3), 379–
392.

Ball, J.A. and J.W. Helton (1992). Inner-outer
factorization of nonlinear operators. J. Funct.
Anal. 104(2), 363–413.

Bode, H.W. (1945). Network analysis and feedback
amplifier design. D. Van Nostrand. Princeton,
NJ.

Boyd, Stephen and Leon O Chua (1985). Fading
memory and the problem of approximating
nonlinear operator with volterra series. IEEE
Trans. on Circuits and Systems.

Byrnes, C.I. and W. Lin (1994). Losslessness, feed-
back equivalence, and the global stabiliza-
tion of discrete-time nonlinear systems. IEEE
Trans. Automat. Control 39(1), 83–98.

Doyle, J.C., B.A. Francis and A.R. Tannenbaum
(1992). Feedback control theory. Macmillan
Publishing Company. New York.

Freudenberg, J.S. and D.P. Looze (1988). Fre-
quency domain properties of scalar and mul-
tivariable feedback systems. Springer. Berlin,
FRG.

Iglesias, P.A. (2001a). An analogue of bode’s
integral for stable nonlinear systems: relations
to entropy. In: Decision and Control, Proc. of
the 40th IEEE Conf. on. Vol. 4. pp. 3419–
3420.

Iglesias, P.A. (2001b). Tradeoffs in linear time-
varying systems: An analogue of Bode’s sen-
sitivity integral. Automatica 37(10), 1541–
1550.

Iglesias, P.A. (2002). Logarithmic integrals and
system dynamics: an analogue of Bode’s sen-
sitivity integral for continuous-time, time-
varying systems. Linear Algebra Appl. 343-
344, 451–471.

Khalil, H.K. (1996). Nonlinear Systems. 2nd ed.
Khargonekar, P.P. and E.D. Sontag (1982). On

the relation between stable matrix fraction
factorizations and regulable realizations of
linear systems over rings. IEEE Trans. on
Automatic Control 27(13), 627–638.

Kolmogorov, A.N. (1956). On the Shannon the-
ory of information in the case of continuous
sgnals. IRE Trans. Inform. Theory 2, 102–
108.

Papoulis, A. (1984). Probability, random vari-
ables, and stochastic processes. second ed..
McGraw-Hill Book Co.. New York.

Seron, M.M., J.H. Braslavsky and G.C. Goodwin
(1997). Fundamental Limitations in Filtering
and Control. Springer. London.

Seron, M.M., J.H. Braslavsky, P.V. Kokotović and
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