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Abstract: This paper provides a viable general approach to switched systems optimal
control. Suc hoptimal con trol problems require the solutions of not only optimal
continuous inputs but also optimal switc hingsequences. Many practical problems
only involv e optimization where the mmber of switchings and the sequence of active
subsystems are giv en. This is stage 1 of the tw ostage optimization methodology
proposed by the authors in previous papers. In order to solve stage 1 problems, the
deriv ativ esof the optimal cost with respect to the switc hinginstants need to be
kno wn. In (Xu and Amsaklis, 2001), we proposed an approach for solving a special
class of such problems, namely, general switc hedlinear quadratic problems. In this
paper, the idea of (Xu and Antsaklis, 2001) is extended to general switched systems
optimal control problems and an approach is proposed for solving them. The approach
first transcribes a stage 1 problem into an equivalent problem parameterized by the
switc hing instams and then the values of the derivatives are obtained based on the
solution of a tw o poit boundary value differential algebraic equation formed by the
state, costate, stationarity equations, the boundary and continuity conditions and
their differentiations. Examples are shown to illustrate the results in the paper.
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1. INTRODUCTION

A switched system is a particular kind of hybrid
system that consists of several subsystems and a
switching law specifying the activ e subsysteat
each time instant. Many real-world processes such
as chemical processes, automotive systems, and
electrical circuit systems, etc., can be modeled as
switc hed systems.

Optimal control problems for switc hed systems
ha veattracted the atten tion of researc hers re-
cently. For such a problem, one needs to find
both an optimal con timous input and an opti-
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mal switching sequence since the system dynamics
vary before and after every switching instant. The
available results in the literature on sud problems
can be classified as theoretical (e.g., (Branicky et
al., 1998; Piccoli, 1998)) and practical (see e.g.,
(Gokbayrak and Cassandras, 2000; Hedlund and
Rantzer, 1999; Lu et al., 1993; Wang et al., 1997)).
Most of the practical methods that we are aw are
of are using numerical methods and are based
on some discretization of continuous time space
and/or discretization of state space into grids and
use search methods for the resultant discrete prob-
lem to find optimal/suboptimal solutions. But the
discretization of time space may lead to compu-
tational combinatoric explosion and the solutions
obtained may not be accurate enough. In view
of this, in some previous papers by the authors



(see (Xu and Antsaklis, 2000; Xu and Antsak-
lis, 2001)), approaches not based on discretization
of continuous time space were explored.

In this paper, we further explore approaches not
based on discretizations. Since many practical
problems only involve optimization where the
number of switchings and the sequence of active
subsystems are given (yet the switching instants
are unknown), we focus on such problems. This is
stage 1 of the two stage optimization methodology
proposed by the authors in previous papers (Xu
and Antsaklis, 2000; Xu and Antsaklis, 2001). In
order to solve stage 1 problems, the derivatives
of the optimal cost with respect to the switching
instants need to be known. In (Xu and Antsak-
lis, 2001), we proposed an approach for solving
a special class of such problems, namely, general
switched linear quadratic problems. In this paper,
the approach is extended to general switched sys-
tems optimal control problems. The approach first
transcribes a stage 1 problem into an equivalent
problem parameterized by the switching instants
and then the values of the derivatives are ob-
tained based on the solution of a two point bound-
ary value differential algebraic equation (DAE)
formed by the state, costate, stationarity equa-
tions, the boundary and continuity conditions and
their differentiations.
2. PROBLEM FORMULATION

2.1 Switched Systems

The switched systems we shall consider in this
paper are defined as follows.

Definition 1. (Switched System). A switched sys-
tem is a tuple S = (D, F) where

e D = (I,E) is a directed graph indicating the
discrete structure of the system. The node set I =
{1,2,---, M} is the set of indices for subsystems.
The directed edge set E is a subset of [ x I —
{(i,4)|i € I} containing all valid events. If an event
e = (i1,12) takes place, the system switches from
subsystem i1 to is.

e F={fi :R*" xR"™ xR —» R"| i € I} with f;
describing the vector field for the i-th subsystem
a::fl(a:,u,t) o

For a switched system S, the input of the system
consists of both a continuous input u(t),t € [to, t/]
and a switching sequence defined as follows.

Definition 2. (Switching Sequence). For a switched
system S, a switching sequence o in [to,tf] is
defined as

o= ((tU,iO)a(tlael)a(t2ae2)7"' 7(tKaeK))7 (1)
WlthOSK<OO,t0§t1§t2SS
tk < ty,and i € I, e = (ig—1,1i;) € E for
F=1,2- K.
We define ¥y, ;) = {o7s in [to, 7]} ad

A switching sequence o as defined above indicates
that subsystem iy, is active in [tg, tg41). We specify
0 € X[4,¢,] as a discrete input to the system (see
(Xu and Antsaklis, 2000) for more details).

2.2 An Optimal Control Problem

Now we formulate the optimal control problem

we will study in this paper. In the sequel, we
A

denote Uy, s, = {ulu € Cylto,ty],u(t) € R™};

i.e., the set of all piecewise continuous functions

for t € [to, ty] with values in R™.

Problem 1. Consider a switched system S. Given
a fixed interval [to,ts], find u € Uy, and a
switching sequence o € Xy, ;1 such that z(t)
departs from a given z(ty) = zo and meets Sy =
{z|ps(z) = 0,4y : R* — RI7} at t; and the cost
functional

J = b(a(ty)) + / "L@)u).t) dt - (2)

to

is minimized. a

In the sequel, we assume that f, L, ¢y and v pos-
sess enough smoothness properties we need in our
derivations. The way we formulate Problem 1 with
a fixed final time is mainly for the convenience of
subsequent studies. Note that for a problem with
free end-time ¢y, we can introduce an additional
state variable and transcribe it to a problem with
fixed end-time (for more details, see (Xu, 2001)).

3. TWO STAGE OPTIMIZATION

Now we review the two stage algorithm (see (Xu
and Antsaklis, 2001)) in the following.

Algorithm 1. (A Two Stage Algorithm)

Stage 1. (a). Fix the total number of switchings
to be K and the sequence of active subsys-
tems and let the minimum value of J with
respect to u be a function of the K switch-
ing instants, i.e., J; = J; (tl,tg, s ,tK) for

(b). Minimize J; with respect to t1,to,--- ,tk.

Stage 2. (a). Vary the order of active subsystems
to find an optimal solution under K switch-
ings.

(b). Vary the number of switchings K to find
an optimal solution for the optimal control
problem. O

Algorithm 1 has high computational costs. In the
followings, we concentrate on stage 1 optimiza-
tion. Note that many practical problems are in
fact stage 1 problems. For example, the speeding-
up of a power train in an automobile only requires
switchings from gear 1 to 2 to 3 to 4. As can
be seen from Algorithm 1, stage 1 can further
be decomposed into two sub-steps (a) and (b)
(note that a similar hierarchical decomposition



method can be found in (Gokbayrak and Cassan-
dras, 2000)).

Stage 1(a)

Stage 1(a) is in essence a conventional optimal
control problem which seeks the minimum value
of J with respect to u under a given switching
sequence o= ((to,%0), (t1,€1), "+, (tk,ex)). We
denote the corresponding optimal cost as a func-
tion Ji(f), where ¢ = (t1,t2,- ,tx)T. In stage
1(a), we need to find an optimal v and the cor-
responding minimum J. For stage 1(a), although
different subsystems are active in different time
intervals, the problem is conventional since these
intervals are fixed. It is not difficult to use the
calculus of variations techniques to prove the fol-
lowing necessary conditions.

Theorem 1. (Necessary Conditions for Stage 1(a)).

Consider the stage 1(a) problem for Problem 1.
Assume that subsystem k is active in [tr—1,tz)
for 1 <k < K and subsystem K + 1 in [tr,tx4+1]
where tr1 = ty. Let u € Uy, s, be a con-
tinuous input such that the corresponding z(t)
departs from a given initial z(ty) = o and meets
Sp = {z|ps(x) = 0,¢; : R* — R} at tp. In
order that u be optimal, it is necessary that there
exists a vector function p(t) = [pi(t), -+, pn(t)]7T,
t € [to,ty], such that the following conditions hold

(a). For almost any ¢ € [to,tr] the following state
and costate equations hold

State eq: d{fl—(tt) = [%—Z(m(t),p(t),u(t),t)]T (1)
Costate eq: dl;(tt) = [%IZ( (), (), u(t), t)]7,(2)

H(w,put) = L(r,u,t) + p" fule,u,t), if
t e [tkfl,tk) (k =K+1ifte [tK,tf]).

(b). For almost any t € [to,tr], the stationarity
condition holds

_ [8H

%(x(t),p(t),u(t)yt)]T- 3)

(c). At ty, the function p satisfies

(i) = 122 @I + L @A (1)

where A is an [;-dimensional vector.
(d). At any ¢, k=1,2,--- , K, we have

p(tk—) = p(tr+)- (5)
Proof: See Chapter 6 of (Xu, 2001). i

The above necessary conditions will be used in

Section 5 in the development of a method for find-

ing 8J1 and 88tJ21

1mposs1ble to find an analytical expression of J; (¢ )
using them. However, we can find the numerical
solutions by solving the two point boundary value
differential algebraic equation (DAE) formed by
conditions (a)-(d) using numerical methods.

In general, it is difficult or even

Stage 1(b)

Stage 1(b) is in essence a constrained nonlinear
optimization problem with simple constraints

min (0 ®)

subject tot € T'
AN ~
where T = {t = (ti,ta, - ,tx)T|to < t1 <
to < --- < tg < ty}. Feasible direction methods
can be applied to such problems. These methods
291 and ‘9 Jl . In our computations, we use

ot
the gradient prOJection method (using Bé?) and

use

the constrained Newton’s method (using =3 o7 %7 and

8;:21) (see Section 2.3 in Bertsekas (Bertsekas,
1999) for details).

A Conceptual Algorithm

The following conceptual algorithm provides a
framework for the optimization methodologies in
the sequel.

Algorithm 2. (A Conceptual Algorithm for
Stage 1)

(1). Set the iteration index j = 0. Choose an
initial /.
(2). By solving an optimal control problem (Stage
1(a)), find J; (7).
(3). Find 22 (i) and ZL(#9).
4). Use the gradient projection method or the
g

constrained Newton’s method (if 88tJ21 (#) is
known) to update # to be #*! = # 4
aldi’ (here o/ is chosen using the Armijo’s
rule (Bertsekas, 1999)). Set j = j + 1.

(5). Repeat Steps (2), (3), (4) and (5), until a pre-
specified termination condition is satisfied. O

The key elements of the above algorithm are

a

b
c).

An optimal control algorithm for Step (2).

aJ 827
The derivations of %+ and 5 for Step (3).

A nonlinear optimization algorithm for Step
(4).

In the above discussions, we have already ad-

dressed elements (a) and (c). (b) poses an obstacle

for the use of Algorithm 2 because % and BatJ;

are not readily available. It is the task of the

subsequent sections to address (b) and devise a

% Jy
a2 -

~ o~

—
~—

method for deriving the values of BJ %7 and

4. AN EQUIVALENT PROBLEM
FORMULATION

In this section we transcribe a stage 1 problem
into an equivalent conventional optimal control
problem parameterized by the switching instants,
which will be used in next section. For simplicity
of notation, in the followings, we concentrate on
the case of two subsystems where subsystem 1 is
active for ¢ € [0,¢;) and subsystem 2 is active
for t € [t1,ts] (t1 is the switching instant to be



determined). We also assume that Sy = R* (for
general S¢, we can introduce Lagrange multipliers
and develop similar methods). We consider the
following stage 1 problem.

Problem 2. For a switched system
i‘:fl(l',u,t), 0<t<t, (1)
i:fQ(Iyuyt)’ tlgtgtfy (2)

find an optimal switching instant ¢; and an opti-
mal u(t), t € [to,ts] such that

ty
T =l + / L u,t) de 3

to

is minimized. ¢o, ¢t; and z(t9) = o are given. O

We transcribe Problem 2 into an equivalent prob-
lem as follows. We introduce a state variable 41
corresponding to the switching instant ¢;. Let
ZTpy1 satisfy

dTn 41
dt
Tn41(0) =t ()

=0 (4)

Next a new independent time variable 7 is intro-

duced. A piecewise linear correspondence relation-

ship between ¢t and 7 is established as follows.
_ J to+ (zng1 — to)T, 0<7<1

Hr) = { Tnp1 4 (b —oni)(r 1), 1<r<2. O

By introducing z,4+1 and 7, Problem 2 can be
transcribed into the following equivalent problem.

Problem 3. (An Equivalent Problem). For a sys-
tem with dynamics

dId(rT) = (Tnt1 — to) fi(w, u,t(7)) ™
et Y

in the interval 7 € [0,1) and

S Y AC At N C)
dl‘dnT+1 —0 (10)

in the interval 7 € [1,2], find an optimal z,1,
and an optimal u(7), 7 € [0, 2] such that the cost
functional

1
J =(x(2)) +/ (Tn+1 — to)L(z,u, t(1)) dr
0

2
+/ (ty — xny1)L(z,u,t(r)) dr (11)
1

is minimized. Here ¢y, (0) = z¢ are given. O

Remark 1. Problem 3 and Problem 2 are equiv-
alent in the sense that an optimal solution for
Problem 3 is an optimal solution for Problem 2
by a proper change of independent variables as in
(6) and by regarding x,1+1 = 1, and vice versa. O

Remark 2. Problem 3 is conventional because it
has fixed time instant when the system dynamics
change. In fact, because z,y; is an unknown
constant throughout 7 € [0, 2], it can be regarded
as a conventional optimal control problem with
an unknown parameter x,y1. In the sequel, we
regard Problem 3 as an optimal control problem
parameterized by the switching instant z,11 with
cost (11) and subsystems (7) and (9). i

5. THE DEVELOPMENT OF THE
APPROACH

In this section, based on the equivalent Problem
3, we develop a method for deriving accurate
numerical value of ‘;—{11. The method is based on
the solution of a two point boundary value differ-
ential algebraic equation (DAE) which is formed
by the state, costate, stationarity equations, the
boundary and continuity conditions for Problem
3 and their differentiations with respect to the

parameter z,1. In the following, we denote ?9_5’

% as row vectors and we denote % asann xn

matrix whose (i1,i2)-th element is gf ‘L Similar
2
notations apply to %, %, %, etc.

Consider the equivalent Problem 3, define

(@ w7, 2ns1) 2 @ngs — ) fi(@,ut(r), (1)
Fo@u, 7, 1) Z (b — wngn) fola,u (7)), (2)
L1z, u, 7, ens1) 2 (a1 — to)L(z, ust(T)),  (3)
L@, 7, 2mi1) 2 (b — ng1) Lz, u, (7). (4)

Regarding z,41 as a parameter, we denote the
optimal state trajectory as z(7, z,+1). We define
the parameterized Hamiltonian as

izl(fl?,uaﬂl’n+1) +PT}?1(I,U,T1 Tpi1),

A for 7 € [0,1),

H(mapauyTaIn+l)
for 7 € [1,2].
o (5)
Assume that a parameter z,yi is given, then
we can apply Theorem 1 to Problem 3. The
necessary conditions (a) and (b) provide us with
the following equations

" .
State eq: % = (8—)T = fi(z,u, 7, Tnt1) (6)
or dp
ap OH .o ofi .7 0L g
Costate eq: —— = —(—=)" =—(5=)' p— () (7
ostate eq: — (8:v) (3}”) (z?x) (7)
H L
Stationarity eq: 0 = (8—)T = (%)T + (8—1)T (8)
ou ou ou
in 7 €[0,1) and
)i _
State eq: % = (8—)T = fa(2,u, 7, Tnt1) (9)
or dp
Op 0H .1 afa dLa
Costate eq: — = —(—)1' = —(==)p - (= 10
ostate eq: —— (81) (QI) (8:1:) (10)
oH d oL
Stationarity eq: 0 = (—)T = (ﬁ)Tp + (—2)T (11)
ou ou ou

in 7 € [1,2]. Note that the optimal p and u are
also functions of 7 and x,,41. Therefore, we denote
them as p = p(7,n41) and u = u(7, Tpt1)-

Loz, u, 7, xpt1) + L fo(z,u, 7, mni1),



From the necessary condition (c¢) of Theorem 1,
we obtain the boundary conditions

z(0,Zn41) = o0, (12)
o0y T
P2 tnt1) = (5 (@(Z2n11)))" - (13)
T
The necessary condition (d) tells us that
p(l=,2nt1) = p(1+, Tny1). (14)

(6)-(8), (9)-(11) along with (12) and (13) form
a two point boundary value differential algebraic
equation (DAE) parameterized by x,1. For each
given x,41, the DAE can be solved using numer-
ical methods. Now assume that we have solved
the above DAE and obtain the optimal z(7, ,+1),
p(7, Zna1) and u(7, £pe1), we then have the opti-
mal value of J which is a function of the parameter
Tn41

1
Ji(Tn41) = P(w(2, Tnt1)) +/ Li(z,u,7,2p41) dr
0

2
+/ ig(:r,u,'r,:rn_+_1) dr. (15)
1

Differentiating J; with respect to x,4+1 provides
us with

Al (a2, wns1) Br2ansr) | [

= + L(z,u,t(7
dTp41 or OTp 41 o [L( (7))
oL Oz oL Ou oL
+(@nt1 —to) (5= — T—)] dr
s 0T 0Tn41 ou 0Tn41 ot
oL Oz oL Ou
—L(z,u,t tr—Tny1)(— =
-i-/1 (=L, u, (7)) + (b —wn41) (5 dtns | udzeit
oL
2 —71)—)] dr.
+2 =20 dr
(16)
So we need to obtain the functions %ﬁ"fl) and

Ou(T,@pn41)
OTr 41

order to obtain

(here we assume that 11 is fixed) in
4N, By differentiating (6)-(8)

dTn 1
and (9)-(11) with respect to x,41, we obtain

o oz 0 or
— = —)=f1+ (@pt1—
OT  OTpi1 OTp41 OT 17
, )(afi or "Tof ou o (17)
N0z Btns1 | Ou drnir | OE
o op o  op af ol
Z L e
OT 0% +1 0Tn41 OT oz oz
afi p Op 2021 Oz o 2 O%f Bu
o) (Byr Py OB B yr or 2T
or " Orp41 0x2 0Tn41 0rdu 0Ty
irpr Ly L _on 0L ou oL,
T —_— —_— T
P ozot’ 912 Ornsr | 0w0u Oxnit | w0t
(18)
af1 oL af1 op
0=(Z)"p+ (3" + @nt1 — ) (F)"
8u2 ou R ou OTn41 ,
0°f1 Oz 0°f1 Ou 0% f1
T T T T T T
P Buor o) TP Bur a7 Guar)
9’L  Ox 0’L  Ou 0%L ]
a5 T
OudT OTpy1 Ou? OTp41 dudt”’
(19)
for 7 € [0,1) and
0 ox 0 oz
- = (=) =—Ffa+ (tf
or anﬂ anﬂ or (20)
)(8f2 ox Ofa Ou L2 )8f2)
o 912 912 _ 22
"N o2 Onit | Ou OTntt at

0 % y__ 9 (%) Oy, Oy

91 0Tnt1’  OTpy1 OT oz

0f2 Op 0%fr Oz 0%fr Ou
)T (pT 2 )T 4 r

—wn+)[( T

92 f5 L Oz
9 _ T T
+2 =) 550)
%L
oxot

Ofa 1 oL
0=—(=2)Tp— (=
( ou )P ou
+(pT 0fr Oz o
oudx 0Tn41
92L  Ox
oudxr 0Tn4+1

0x2 0Tpn41
9’L  Ou

0T0U OTn 41

012 0Tn41

+(2 - T) L

(21)
d )
T+ (zn — to)l(22y7 22
) ou OTp 41
2f, Ou

T——
+(p Ou2 OxTpn41
92L  Ou 92L

Z - 9 ==
ou? oz T 27 Bum

B
(22)
for 7 € [1,2].

2
In the above equations, %xf; is an n X n X

n array whose (Ji,J2,73) element is

and the notation pT 2L _22 _ denotes an 1 x
p 8$2 B:tn+1

n row vector which has its j-th element as
n n 8?2 fi,5 Ox;
Zjlzl Zj3:1 p]l 8Ij28;1]‘3 anjil
Ji-th element of fi, pj, is the j;-th element of p
and zj, is the j»-th element of z. Other notations
can be interpreted similarly (see (Xu, 2001) for

details).

Differentiating (12), (13) and (14) with respect to
ZTp+1, We obtain

where f; ; is the

0x(0, Tp41) —0 (23)
a37n+1 '
op(2, Tnt1) _ 0?9(2(2, Tnt1)) OF(2, Tni1) (24)
OTn+1 Ox? 0Tnt1
ap(l_axn+l) — 1917(1+,1'n+1) (25)
aCL'TL+1 aCL'TL+1 '

It can now be observed that (6)-(8), (9)-(11)
and (17)-(19), (20)-(22) along with the boundary
conditions (12), (13) and (23), (24) and with the
continuity conditions (14), (25) form a two point
boundary value DAE for (7, z,+1), p(7,Znt1),

Oz (r,en op(1,2ys ou(r,zn
u(T, Zp41) and mé;i:l), pé;er;rl)a ué;ir:rl)
By solving them and substituting the result into
(16), we can obtain d;”l .
n+1

Remark 3. In general, we need to resort to numer-
)ical methods (e.g., shooting methods) to find the
solution to the two point boundary value DAE. In
particular, if all subsystems are linear in control
and the cost function L is quadratic in control,
then the two point boundary value DAFE can hence
be reduced to a two point boundary value differ-
ential equation which can be solved more easily.
See Chapter 8 of (Xu, 2001) for details. i

Remark /. The approach developed in this sec-

tion can be extended in a straightforward manner

to the case of several subsystems and more than
2

one switchings. The value of %&tl) can also be

similarly obtained. See Chapter 8 of (Xu, 2001)
for details. O

0rdu 0Tn41

T T82f2 T
T+ 210" 52



6. SOME EXAMPLES
Ezample 1. Consider a switched system with

subsystem 1: & =z + 22u, (1)

subsystem 2: & = —x — 3zu. (2)

Assume tg = 0, ty = 2 and the system switches at
t =1t (0 <t <2)from subsystem 1 to 2. Find
an optimal switching instant ¢; and an optimal
input u such that J = 1(2(2) —1)? +1 f02 u?(t) dt
is minimized. Here z(0) = 1.

The method in Section 5 is used to obtain fli—{ll.
Choose an initial nominal ¢; = 1.2. By applying
Algorithm 2 with the gradient projection method,
after 20 iterations we find the optimal #; to be
t; = 0.9994 and the corresponding cost to be
1.1848 x 10~ 7. Figure 1 (a) and (b) show the
continuous input and the state trajectory. Note
that the theoretical solutions are 5P = 1, u%* =

0 and J°Pt = 0. |

e [ i
Fig. 1. Example 1: (a) The control input. (b) The
state trajectory x(t).

Example 2. Consider a switched system with

T1 = —x1 + 2210

subsystem 1: { .
To = T2 + Tou

T1 =1 — 311U

subsystem 2: { iy = 225 — 2250

1 =221 + 11U

bsyst 3: .
subsystem { Gy = 20 4 32ou

Assume to = 0, ty = 3 and the system switches
at t = t; from subsystem 1 to 2 and at ¢t = to
from subsystem 2 to 3 (0 < #; < t2 < 3). Find
optimal switching instants ¢, t2 and an optimal
input u such that J = 1(21(3) — e?)? + 1(z2(3) —
e?)? + %fOS u?(t) dt is minimized. Here z;(0) = 1
and z5(0) = 1.

a1
aty
and g—‘t]; . We choose initial nominal t; = 1.1
and to = 2.1. By applying Algorithm 2 with the
gradient projection method, after 18 iterations
we find that the optimal ¢; and ¢» to be t; =
1.0050, t2 = 1.9993 and the corresponding cost to
be 2.7599 x 1076, The corresponding continuous
control and state trajectory are shown in Figure
2 (a) and (b) show the continuous input and
the state trajectory. Note that the theoretical
solutions are t"" = 1, t*" = 2, u"" = 0 and
JePt = 0, so the result we obtained is quite
accurate. O

The method in Section 5 is used to obtain

s 0 <
002

0,08

o
2 25 3 o 1 2 3 4 5 6 1 8

t
(@) (b)

Fig. 2. Example 2: (a) The control input. (b) The
state trajectory.

7. CONCLUSION
In this paper, a general approach to switched
systems optimal control is developed. It is mainly
developed in Sections 4 and 5 and is applicable to
problems with many subsystems and more than
one switchings. The approach is based on solving a
two point boundary value DAE derived in Section
5. Derivatives of the optimal cost with respect to
the switching instants can be obtained accurately
and therefore nonlinear optimization algorithms
can be used to find the optimal switching instants.
Future research topics include the extension of
the approach to systems with internally-forced
switchings and systems with state discontinuities.
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