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Abstract: Based on investigating the spatially distributed input-output relationship of
disinfectant residual in water distribution netw orks, this paper formlates the water
qualit y comrol problem of multiple nodes in an adaptive optimal control framework,
with special consideration on the periodic variation of parameter uncertainty and
imposed bounds on the control input. The periodic parametric uncertainty, which
arises due to varying consumer demands, is represented by a Fourier series with on-
line parameter estimation of the unknown coefficients. A modified indirect adaptive
control sc heme for a single-input is studied, and then is extended to the case of multiple
disinfectant boosters. A simulation example is provided to illustrate the performance
of the algorithm in a real water distribution network.
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1. INTRODUCTION

Chlorine is by far the most common disinfectant
used in Drinking Water Distribution Net w orks
(DWDN) to help free the w aterfrom a number
of possible disease-causing organisms. The injec-
tion of appropriate amounts of chlorine at suit-
ably selected nodes of DWDN is a key issue for
maintaining high quality drinking water, known as
the water quality control problem. Drinking water
standards and regulations specify the minimum
chlorine residual which must be present at points
of w aterconsumption to achieve pathogen con-
trol; on the other hand, chlorine residual can not
be too large since reactions of chlorine with cer-
tain organic compounds may produce disinfectant
byproducts (DBPs), some of which are suspected
carcinogens (Bull and Kopfler, 1991). Therefore,
the spatial distribution of chlorine concentration
in a DWDN must be maintained within a certain
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range to guarantee the quality of drinking water
and to limit formation of disinfectant byproducts.

Accurate and reliable control of ¢ hlorine residuals
within a DWDN is a new and complex problem.
Recently, the issue of modeling and controlling
w ater qualit yis starting to attract significant
atten tion (Polycarpou et al., 2001). In a recen t
paper (Brdys et al., 2000), a hierarc hical tw o-
lev el structure for the integrated quantity-quality
con trol w as proposed. A t the upper level, the
pump/valv e and chlorine injection schedules are
generated online using a repetitiv econ troltech-
nique. The low er levels to adjust and maintain
the c hlorine concertration at the monitored nodes
within some prescribed limits. A robust predic-
tive con troller was further developed in (Brdys
et al., 2001) to introduce a safety-zone based on
output prediction techniques. By assuming that
the parameters of the model are constant over
the time slots, an off-line estimation method was
applied to generate the bounds for the parame-
ters. The safety zones for the output constraints



are proposed, and are iterated to maintain the
chlorine within the prescribed limits under small
set-bounded uncertainties. A general formulation
for the water quality control problem based on pa-
rameter estimation methods and adaptive control
was developed in (Polycarpou et al., 2001).

In practice, it is impossible to maintain the chlo-
rine concentration at all consumption nodes to
their desired levels due to the decay of chlorine
during transport time, unless a chlorine boosting
station is placed at each node (which is clearly
impractical). The objective of this paper is to
formulate the global objective of maintaining the
spatial distribution of chlorine residual at a set of
monitored nodes to some corresponding levels, by
balancing the allowed tracking errors at the vari-
ous monitored nodes. This is achieved by selecting
an appropriate cost function which is subject to
input constraints. The underlining structure of the
feedback scheme is based on an indirect adaptive
control methodology with a periodic time-varying
model. The presence of unknown and time-varying
consumer demands gives rise to significant time-
variation in model parameters, which is addressed
by employing a Fourier series approximation of
the parametric uncertainty. The coefficients of the
Fourier series are updated on-line using parameter
estimation techniques. Finally, a simulation exam-
ple, based on a real water distribution network, is
presented to illustrate the proposed methodology.
Due to page limitations, the details of the design
derivation and some analysis are omitted.

2. WATER QUALITY CONTROL
FORMULATION

Due to the decay of chlorine, water utilities must
balance between excessive disinfectant concentra-
tions near the booster and loss of pathogen control
at the network periphery. This balance is com-
plicated further by the desire to minimize dis-
infectant dosage and contact time to reduce the
formation of DBPs. The selection of actuator and
sensor locations is crucial to achieving the control
objectives. In general, sensors should be placed on
various network paths that “cover” as many of the
water consumption points as possible. Actuators
need to be placed at locations that guarantee max-
imum coverage. Another consideration in selecting
the boosting locations is to make the network
s “decoupled” as possible since in that case it
becomes easier to design a feedback controller.

Given a selected set of sensors and actuators,
the input-output water quality dynamics can be
modeled from a controls perspective. The input-
output relationship for a DWDN with pipes can
be written in the form (Zierolf et al., 1998)

= Y Beltult —dp(t)),

pEP(t)

where P(t) is the set of all paths from the input
to the output; 3,(t) is a path impact factor, and
d,(t) is the transport delay associated with path p.
The set of paths P(t) is time varying because the
number of paths from an input node to an output
node may change with time due to variation in
the hydraulics. From a controls perspective, the
transport delay d,(t) can be discretized so as to
eliminate the time-variation in time delays:

d
=Y Bi(k)u(k —i)
i=d

where §;(k) now reflect the sum of all path impact
factors associated with each integer time delay,
and d and d reflect the minimum and maximum
transport delays over all possible paths between
input and output. The above formulation trans-
forms the time-varying nature of time delays into
time-varying coefficients, making it more appro-
priate for control design.

Typical water distribution networks are comprised
of a few tanks and possibly thousands of pipes. By
combining the water quality dynamics in trans-
port through pipes and storage tanks, a rela-
tionship between chlorine concentration at an in-
jection point u(k) and a monitored sensor node
yi(k) (i = 1,...,m) can be derived as follows
(Polycarpou et al., 2001)

0= 0 Ryilh ) +

where n; is the number of tanks that provide water
to the i-th output; d;, d; are the lower and upper
limits of transport delay between the input and
the i-th output, respectively; a;;(k), b;j (k) are the
corresponding time-varying coefficients.
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By recursively using the above equation to replace
yi(k — 1)...yi(k — d;), the following equivalent
model is obtained

Z o (k

where a;;(k ) and f;; (k) are new coefficients; ¢; =
d; +n; — 1 and d; = d; + d; — 1. The equivalent
model is convenient for feedback control design
in the sense that the controller will not need the
future value of the sensored output.

Let y; (k + d;) be the desired value of y;(k + d;),

and define 7; 2 k+d;. In general, it is not possible
to achieve y;(m;) = yf(r;) for all i = 1,...,m
with only one control input. The main objective
is to keep the chlorine concentration level at the
monitored nodes as close as possible to the desired
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value and to maintain the outputs within the
prescribed limits, in the presence of unknown and
time-varying consumer demands. Therefore we
seek a control input u that minimizes the weighted
multi-objective cost function

J(u) = Zz\i(yi(n) vi ()%, (1)
subject to
u<u(k)<u

where \; are the weight coefficients (0 < A; < 1),
which are used to represent the significance of
tracking error at each monitored node; u and u are
the lower and upper limits for u(k), respectively.

Although the water quality model described is
linear, the design of a feedback control systems
presents some important challenges. First, the
coefficients of the ARMA model are unknown
and time-varying. Although the daily patterns
of aggregate water demand may be known, the
spatially distributed patterns at individual nodes
are not (and thus neither is its effect on travel
paths and time delays between particular inputs
and outputs). Second, the presence of transport
delays make the control design more difficult.
Finally, it is important to note that the model may
be subject to other modeling errors or disturbance
type of uncertainties.

Next an indirect adaptive control scheme is de-
signed based on discrete-time modeling methods
(Tsakalis and Ioannou, 1993; Landau et al., 1998).

3. ADAPTIVE OPTIMAL CONTROL
SCHEME FOR WATER QUALITY

We first consider the design of feedback control
scheme for the case of having only one chlorine
injection booster. If the parameters in the system
model are known and there is no input constraint,
the problem can be solved directly by setting
0.J/0u(k) = 0, which gives

1 S * . J—
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ai di
Z ij(13)yi(ri — J) — Z Bij (i)u(ri — 7)}2)
j=d; j=di+1

J

From a controls perspective, various feedback con-
trol approaches can be used as design candidates,
such as optimal control scheme, predictive control
scheme, switching mode control scheme, etc. In
this section, we propose a way for handling un-
known large time variations of parameters, based
on exploiting the fact that the parametric time-
variations display a pronounced periodic pattern.

The unknown parametric variation is approxi-
mated by a Fourier series. We assume that the
period is known but the periodic pattern is un-
known. The assumption of a known period is
quite realistic from studies in water hydraulics
and water quality. Generally, the parametric time-
variations have a periodic pattern with a typical
period (denoted by Tj,) of 24 hours due to the
daily variations in water demand. We also assume
that some lower and upper limits for the trans-
port delay (denoted by d; and d; respectively) are
available apriori (the limits on the transport delay
can be estimated through hydraulic simulation).

Since the coefficients of the ARMA model are
periodically varying , they are approximated by
a Fourier series with finite number of terms:

N
Fk) = fo+ > (ff sin(lwk) + ff cos(lwk)) , (3)

=1

where w = 27T/T, (T is the sampling time), f
denotes a;; or 355, and fo, f,f{ are unknown con-
stant parameters based on the Fourier coefficients.
In practice, N should not be needlessly large. Usu-
ally, the first few Fourier components are enough
to approximate the periodic time variations.

For notational simplicity, sin(lwk) is denoted by
sk, cos(lwk) is denoted by c¢. From (3), the
input/output relationship can be rewritten as

qi N
yz(k) = Z (aijo + Z (Oéfjlsk + afjﬁk)) yz(k - .7)
Jj=d;i =1
d; N
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=1
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Based on (4), using parameter estimation tech-
niques, the identification model is chosen as

qi
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where @ijo(k), a7 (k), &i;(k), Bijo(k), B;(k),
¢;1 (k) are the on-line parameter estimates of ajo,
o, oy Bijo, Bij, Bij respectively.

For notational compactness, we define the follow-
ing vectors

duj(k) = [aujo(k) -+
Bz](k) = I:BZJO(k)
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gi(k —j) =yi(k —j) [1 sin(wk) --- sm(ka)
cos(wk) --- cos(Nwk)]

a(k—j)=u(k—j) [1 sin(wk) --- sin(Nwk)
cos(wk) --- cos(Nwk)]
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Let the identification error be defined as e;(k) =
yi(k) — 9:(k), and the corresponding parameter

estimation errors are defined as 6;(k) 2 6;(k) —
0;. Based on the network model (4) and the
identification model it can be easily verified that
e;(k) can be written in the form of

ei(k) = —0i(k) T Ci(k) ()

From (5), using techniques from adaptive control
it is possible to derive an adaptive estimation law

Yoei(k)Gi(k)
co + [|Gi(K)|?

where ¢y is a small positive constant, 7 corre-
sponds to the adaptive gain, 0 < vy < 2, and

fi(k +1) =0;(k) + (6)

d;

G = (¥ +1) Zyz (k- ) +

Jj=di

Based on techniques from adaptive literature,
the adaptive law (6) guarantees that 6;(k) is
uniformly bounded and for any finite d,
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From (2), the future values a;;(m;) and B;;(7;) of
a;j (k) and B;;(k) are needed to obtain the control
input u(k) because of the transport time delay. In
the above estimation scheme, the estimate of §; (k)
is obtained based on the identification error e;(k),
therefore, we can obtain the prediction value of
the unknown coefficients based on these estimates.
Let 4;(;) be the prediction value of y;(k) based
on the predicted coefficients. We first consider the
optimal solution for the prediction y;(7;) and then
show the control law obtained is an asymptotical
solution for the optimal control problem (1).

We define &;;(r;) and Eij (7;) as the prediction of

T
a;j (k) and B;; (k) as follows:

u(k - j)?
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where f denotes a;; or ;.
Now, we consider the problem of minimizing

m

T'(w) =Y M) —yi () (®)

i=1

subject to u < u(k) <

qi
Zd Tz yz i )
=%

In order to solve the optimal problem with box
constraint, a saturation function sat(u) is intro-
duced to express the solution analytically:

w, where
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sat(u) =
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Similar to (2), from the identification model and
(8), we obtain the control law

By comparing the definition of §,(r;) and the
identification model , we obtain

R . T
Gi(rs) = Gi(m) = (0uk + d) = Bik)) - Gi(m) (11)

Therefore, from (7), we obtain

—00

R T
— lim (9 (k +d;) — 9(k)) () = 0 (12)
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By applying the control law (10) to the in-
put/output model (4), we know the input is
bounded due to the saturation function, and the
plant is a bounded input bounded output system,
so the output y;(k) and (;(k) are also bounded.
Therefore, according to (7), limg_,o €;(k) = 0,
i.e., §;(k) converges to y;(k) asymptotically. From
(12), ¥;(r;) converges to §;(r;) asymptotically.
Hence, y,(r;) converges to y;(r;) and J'(u) con-
verges to J(u) asymptotically. We conclude that
the control law (10) and the estimation law (6)
guarantee that the tracking errors are minimized
adaptively under the input constraint.

) sin(lwr;) + fl (k )cos(lwﬂ')) )



From water quality modeling in DWDN, 3,4, (k)
is related to the chlorine decay coefficient, which
is non-negative. Therefore, a positive lower bound
Bio for Biq. (k) exists and is assumed to be known.
In order to avoid the control input u(k) (prior to
saturation) from becoming unbounded, we need

to keep B;4. (1;) away from Bj. In this paper,

we set ;4. (1;) to Bio if B;q, (1;) drops below Bj.
This is known as “projection modification” in the
adaptive control literature.

To address the ignored modeling uncertainties
and high Fourier series terms, we may use ro-
bust adaptive techniques, like dead-zone, leakage,
parameter projection to modify the estimation
laws and ensure the boundedness of the parameter
estimates and the small-in-the-mean property of
the tracking error in the presence of bounded dis-
turbances. The robustness discussion is omitted
here due to space limitations.

Extension to the case of multiple boosters
Injecting chlorine at distinct locations through-
out the distribution system may produce a more
uniform disinfectant residual (in space and time)
while lowering the required total chlorine dose.
The general water quality model for a system with
n boosters and m sensors is inherently a multiple-
input, multiple-output (MIMO) interconnected
system, which can be described by

k) = Zaij( )yi(k—j)+ Z
j=1 I=1
m, d;;,dy are the lower and

where i = 1,2,..., d

upper limits of delay respectively between the I-
th input and the i-th output, a;;(k), B (k) are
the coefficients of the multivariable ARMA model,
and the integer n; corresponds to the number of
tanks that provide water to the i-th output. The
adaptive control problem can be formulated in a
similar way as the single input case.
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The multivariable adaptive optimal control prob-
lem is more complex because of two kinds of
coupling: coupling in space and coupling in time.
Coupling in space occurs because the boosters
and tanks are connected through multiple pipes.
Coupling in time is present because the control in-
puts from different time steps are related through
the model equation. If the model is known, the
Tamura coordination method may be applied to
solve the optimal control problem (Tamura, 1975;
Brdys and Ulanicki, 1994). It leads to a three-
layer optimization structure, and the objective
is achieved by using Langrange multipliers, first
for the spatial interaction and then for the time
couplings. However, the relationship between the
hydraulic dynamics and water quality dynamics
in DWDN is extremely complex and the known
model assumption is hard to justify.

l]l ul(k_j)a

Fig. 1. Network configuration diagram and net-
work hydraulics.

In practice, the interdependence among con-
trollers and outputs may be taken as a periodic
unknown external disturbance to the sub-network
due to the daily periodic variation in water de-
mand. Therefore we may decompose the whole
network to sub-networks, and consider the de-
composed sub-network based on the single-input
model by adding an additional term to represent
the chlorine from the rest of the network.

4. SIMULATION EXAMPLES

To illustrate the performance of the adaptive
optimal control algorithm we performed several
simulation studies using the network topology of
a water utility in the western United States. The
network configuration is shown on Figure 1. The
flow velocity in the pipes and the draining/filling
of the tanks are controlled by the water demand
of the system and water supply from the reservoir,
which is the only water source in the network. The
periodicity of the water demand is 24 hours and
most junctions share similar demand patterns.

The chlorine booster is at node 4075 and the mon-
itored outputs are at nodes 4385 and 4595. The
minimal transport delay from node 4075 to 4385
is about 1 hour; from 4075 to 4595 it is about 2.5
hours. The desired chlorine concentration for both
output nodes is set to 0.6 mg/l and A; = Ay = 0.5.
The control objective is to minimize the tracking
errors and to keep the input concentration within
the bounds [0.6mg/1, 0.9mg/l].

In the first simulation, we ignore the output at
node 4385 and just consider the control of the
chlorine concentration at node 4595. An indirect
adaptive control approach is employed with a
Fourier series (the number of Fourier terms N =
5) approximating the unknown time-variation in
water demands. The normalized gradient method
is used with a learning rate 79 = 0.2 and the
design variable ¢g = 0.5. The initial values for the
parameters are set as & 19 = 0.2, Bidio = 0.5, the
initial values for other parameters are set to zero.
The By is set to 0.1 (i = 1,2). The initial values
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Fig. 2. Simulations with indirect adaptive control.
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Fig. 3. Simulations with adaptive optimal control.

may affect the transition performance of the sys-
tem. It is better to set these parameters to the val-
ues estimated based on experience and hydraulic
simulations. However, from our simulations, the
initial values do not make a big difference. Fig-
ure 2 shows the simulation result. To compare
the result with the adaptive optimal result below,
as shown in the figure, the output concentration
at node 4385 is measured and displayed on the
top right plot of the figure, and the cost function
J = 37 Ni(yi(m) — yi(m))? is shown on the
bottom right plot of Figure 2. As can be seen from
the figure, the tracking at node 4595 is reasonably
good, however there are sharp overshoots. This is
because we use only 5 Fourier terms and ignore
the other uncertainties.

Next, under the same hydraulic dynamics, we
perform the simulation with the adaptive optimal
control. The input concentration at node 4075 is
limited to be within the upper and lower bounds.
We still use 5 Fourier terms to approximate the
variation in parameters and use the same control
parameter (co,%0,3i0), and same initial condi-
tions. The simulation result is shown on Figure 3.
In comparing it with the indirect adaptive control
result above, we see that the tracking errors are
largely reduced and the input is within the pre-
scribed set. The overall tracking performance at
both monitored nodes is reasonably good.

5. CONCLUDING REMARKS

Regulating the spatio-temporal distribution of
chlorine concentration is a crucial component of
providing clean drinking water to consumers in
spatially distributed water distribution networks
where flow, temperature, and water quality varia-
tions occur on daily and seasonal cycles. This pa-
per formulates the water quality control problem
in an adaptive optimal control framework with
special consideration on the case when the number
of controllers is less than the sensors. The ex-
tended decomposed sub-network formulation for
the control with multiple boosters can be taken
as a special case of control with single booster by
representing the coupling as a periodic external
signal. The more general multi-level coordination
optimization problem is under investigation.
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