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Abstract:

A new approach to derive a finite element discretisation of PDE equations soley from
observations is compared, in terms of approximation accuracy, with the standard finite
element Galerkin approach which assumes knowledge of the governing PDE’s. It is shown
both in theory and by means of an example that, for a given model order, the identified model
is more accurate than the equivalent finite element Galerkin approximation derived from the

original PDE’s.
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1. INTRODUCTION

The numerical computation of the solution of PDE’s
and of the control laws associated with a distributed
parameter system is often based on a finite dimen-
sional discretisation of the original PDE. A well
known approach is the finite element Galerkin method
(Brenner and Ridgway Scott, 1994).

The standard method of discretisation however as-
sumes a complete knowledge of the governing PDE’s
for the system of interest. But in many cases the
evolution equations will not be known a priori and
only measurements of the state (solution) of the sys-
tem are available. In a companion paper (Coca and
Billings, 2002), a new approach to derive a finite ele-
ment discretisation of PDE equations from experimen-
tal measurements using system identification has been
introduced to address this kind of problem.

The identification data could represent a video record-
ing of patterns in a chemical reaction or the paper pro-
file measured using a full-web measurement system
in a paper making process, for example. In another
scenario, the data could be the result of a high order
numerical simulation of a known PDE. The proposed
identification approach can be used to derive a simpler,
reduced order model which preserves accuracy and

which is much less expensive from a computational
point of view.

The proposed approach involves two basic steps, the
finite element approximation of the variables in the
spatial domain and the identification of the finite di-
mensional model from the time-dependent coordinate
vector respectively.

Transforming the original, infinite dimensional system
of PDE’s into a finite dimensional problem poses
at least two very important questions. The first is
whether or not the finite dimensional discretisation
of say, order n, converges to the true solution as
n — . The second question is how to choose the
right order of approximation knowing that if the order
is too small the finite element solution will provide
a poor approximation to the original PDE solution
or even display qualitatively different behaviour. On
the other hand, choosing a very fine finite element
approximation subspace, that is a large n, will result
in large scale finite dimensional models which are not
always convenient for real-time control applications
involving dynamic optimisation because this would
lead to a significant increase in the computational
work.



The convergence of the identified finite dimensional
models has been established in (Coca and Billings,
2002) for a class of linear first order systems. With
regard to the issue of model order, the proposed ap-
proach allows optimisation of the number of degrees
of freedom by projecting the initial interpolation onto
a suitable coarser finite element subspace subject to
predefined accuracy constraints.

In the standard finite element Galerkin method, re-
ducing the order of approximation by using a coarser
approximation subspace ignores the "high frequency’
components of the solution lying in the orthogonal
subspace with negative effects on the behaviour and
accuracy of the approximate solution.

The aim of this paper is to analyse the effects of the
reduction in the model order on the approximation ac-
curacy of the identified finite element models derived
from spatio-temporal measurements. Theoretically, it
is shown that the identified models are more accurate
than the models derived by the standard finite element
approach with respect to the same finite element basis.
The analysis is supplemented by test computations
which confirm the theoretical results.

2. THE EVOLUTION EQUATION

Let H be a separable real Hilbert space with inner
product (-,-) and norm |-| and V another separable
Hilbert space which is embedded continuously and
densely in H. Here H is identified with its own dual
space. Let V* denote the dual space of V and || - ||
denote the norm on V*. It follows that V C H C V*
with continuous and dense embeddings. The following
inequality is assumed to hold

o] < A7Y2||g|| @)

Consider the following evolution equation

du +Au=v(t) (2)

dt
u0)=uyeH 3)

with A a bounded linear, coercive operator ((Ag, @) >
allo||?, @ €V for some « > 0), v(t,x) € C(IR,;H) N
L2(0,T;H), T > 0, bounded in C(IR, ;H). The ini-
tial value problem (2), (3) has a unique solution
u(t,x) defined for all t > 0 such that ue C(IR ;H) N
L2(0,T;V), VT > 0.

The equation (2) is usually complemented by bound-
ary conditions which can be of the Dirichlet, Neu-
mann or periodicity type for example. These can be
accommodated by considering restrictions of A and v
to corresponding closed subspaces V

3. THE IDENTIFICATION METHOD

The identification method proposed in (Coca and
Billings, 2002) can be viewed as an inverse finite el-
ement Galerkin approach where the solution is used
to derive the finite dimensional model rather than the
original PDE’s.

To account for the fact that in general it is not possible
to measure the full state (solution) of the system,
an observation operator % : C([0,T],C(Q)) — # is
introduced as follows

o= 2U={ut )N @

where # = IRN*" is the observation space to which
the measurements y = Z°u belong. This requires that
both u(t,x) and v(t,x) are continuous with respect to
X.

It is assumed that point measurements are
recorded from a finite number of locations distributed
uniformly over the spatial domain with a sampling
step Ax (i.e. the data is spatially sampled at the n—
1 nodal points £,2,...,"=1) and that the data is also
sampled uniformly over the time interval [0, T] with a
sampling time At. In practice it is assumed that both
AX = r—11 and At are sufficiently small so that the full
behaviour of the solution u is captured.

Let V" be a finite dimensional subspace of V. The
identification problem is to determine, based only
on the given set of discrete observations yy, =
{u(ti,xj)}ijzzll::";l[} and vy, = {v(ti,xj)}ijim[} a finite
dimensional dynamical system whose solution up ap-
proximates the observed dynamical behaviour in vV ",

The identification is performed in two stages. In the
first stage the data is interpolated onto a finite element
subspace V". This involves computing the input and
output coordinate vectors relative to the finite element
basis. The second stage involves estimating a finite
dimensional, discrete-time model which approximates
this input/output behaviour.

A common choice of finite element subspaces V" on
Q are the spaces of continuous piecewise polynomial
functions defined with respect to a uniform mesh on
Q. For simplicity it is assumed that Q = (0,1).

Let {¢]'}]_, be the standard Ith order B-spline base
(de Boor, 1978). In this case
V" =span{g'}}_,andV is the Sobolev space H 10,1).

Note that |J V" is densein H =L2(0,1) and H'(0,1).
n=0
Let

Yn(t,x) = Zyn,j(t)(pjn(x)v t>0 ®)
=

Va(t,X) = 3 Vi i (1), 0] (%) t>0  (6)
=

denote the interpolation of u and v respectively in vV .



It was shown in (Coca and Billings, 2002) that the
input/output behaviour vn(t) = (V,o(t), .-, Vn(t)),

Yn(t) = (Yno(t), -, Ynn(t)) can be approximated by
the following differential equation

% + Anun = Vi (), @)

dt
Un(0) = ¥n(0) (8)

where An : V" — V" is a finite dimensional operator
defined by

(Aup, ") =

<Anuﬂ7 >v (pn evn (9)

forany up e V" C H.

More precisely it was shown that the solution un(t, x)
to (7) remains in a bounded set of L*(IR;H) and
that un(t,X) — yn(t,x) strongly in L?(0,T,H) and in
L2(0,T,V) as n— oo,

Assuming that V" is a high order approximation sub-
space, let V™ be the coarser subspace such that V™ c
V" and let

Ym = PmYn Z ym J

Um = PmUn = Z me m(x) (10)
J_

Vi = PnVn = z Vi, (t

be the orthogonal projections of y,, (the approximation
of uin V"), un and v, respectively on the coarser
subspace V™ and

Qn muﬂ_zun mJ IVJ ()

(%) (11)

Z Vn—m,j(t)ll/
=1

be the projection of u, and v, respectively on the
orthogonal subspace W"=™ of V™ in V" spanned by
the basis {y; ™}

Vnem = Qn_mVn =

Corollary 3.1. With the notation introduced above it
follows that:

a) Um(t,X) — ym(t,x) strongly in L?(0,T;H) and
L2(0,T;V) asn — oo,

b) Um(t) = Ym(t) in L2(0,T,1%(0,0)) as n — oo,

Proof: Projecting equation (7) on V™ and W™ re-
spectively leads to the following dynamical system

du
d—tm + PrAn(Um+Un_m) = Vm(t),  (12)
dup_m

dt

+ Qn—m(Aﬂum"‘ un—m) = Vn—m(t)

with initial conditions, um(0) =
Qn_m¥n(0).

The convergence results @) and b) follow as a conse-
quence of Theorem 3.1 in (Coca and Billings, 2002).

Pmyn(o) and Un_m(O) -

Remark 3.1. Assuming that only up, is observable and
that the system (12) admits an external differential
representation (input/output equation) with inputs v m,
V_m and output up, it follows that based on the inputs
Vm, V,,_m, @and the outputs yn, it should be possible to
estimate an input/output dynamical representation to
approximate the dynamics in the coarser space V™
which according to Corollary 3.1 converges to the
interpolate ym, and to the true solution uas N — <o,

The resulting model provides a better description for
the dynamics in the V™ subspace than a standard
Galerkin approximation, involving the same number
of equations, because the input/output model derived
from (12) accounts for the dynamics of the small
scale structures in the complementary subspace W"—™
represented by the coupling term PpAnu,,_p, in (12)).

In numerical simulation, an initial high dimensional
approximation on a fine grid, could be replaced with
a discrete-time approximation of lower dimension ob-
tained from data generated by the high-dimensional
model using a system identification approach. The
resulting discrete-time model will be able to predict
better the low-frequency part of the PDE solutions
than the standard Galerkin approximation involving
the same number of equations.

Assuming that the data used in identification is the
result of numerical simulation, let y, = u, and u™
be the solutions of the Galerkin approximation of
order n and m respectively, with n > m. Recalling
the minimum distance properties of the projection
Um = Pmun with respect to up, let eq = Uy — u™ be the
approximation error, relative to up, of the low-order
Galerkin approximationin V™.

It easy to show that e, satisfies the following error
equation

dem
(S, 0™ + (A6, ") + (Un_m, @) =0
(13)
forany o™ € V™. By taking ¢™ = ey, and thanks to the

coercivity of A it follows that

e el + olenll < lenllun ol (14)

and subsequently after using twice (1) that
d 2 5 1
—le el < — 1
dt| | +O!)L| | — (X}L|unim| ( 5)

Integrating (15) and using the classical Gronwall
lemma yields



2
_ Un_ _
enf? < len(0)e + om0 - ety

(16)
where |u,_ml2 = sup {|up_m(t)
te[0,00)

an upper bound for em(t) in L*(IR, ;H).

2}, which provides

4. NUMERICAL EXAMPLE

This section provides a comparison of the quantita-
tive approximation properties of the identified finite
element model and the model derived by using the
standard finite element Galerkin approach for the fol-
lowing diffusion equation

au(t,x) _C82u(t,x)
ot X2

=0, 17)

with domain Q = (0, 1), initial conditions

[ 2Bx € (0,0.5)
u(0,x) = { 2B_2Bx x€ (05,1) 1O
and Dirichlet boundary conditions. In this case H =
L2(0,1) and V is the Sobolev space H}(0,1) endowed
with the usual inner products and corresponding in-
duced norms.

The operator A € £ (V,V*) is given by
1
(A9.v) = [Dp(DY(dx  (19)
0

with ¢, w € H}(0,1). It it easy to see that assumptions
(Al) and (A2) are verified in this case.

For B = 72 the exact solution u(t, x) of the initial value
problem (17), (18) is given by the following series
expansion

28D k1

u(t,x) = 20

u(t,x) kg'l(z" 172 e (20)
- sin((2k—1)mx).

The solution, based on the first 50 terms of the ex-

pansion (20) with ¢ = 1.0 was sampled uniformly in

both the spatial and time domain with Ax=1/128 and
=05x1073.

From each location N=1000 data points were gener-
ated. The data were interpolated using linear B-spline
functions. The initial interpolated solution involving
127 basis functions was subsequently projected onto a
lower approximation subspace and expressed in terms
of only 15 basis functions.

One thousand samples shown in figure 1, correspond-
ing to the output vector yn(t) = (Y1 (t), .-, ¥n15()),
were used for identification. The data was used to esti-
mate a deterministic MIMO-AR model (not given here
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Fig. 1. Coordinate vector yn(t)
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Fig. 2. Prediction error yn(t) —
MIMO-AR model.

u"(t) for the identified
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Fig. 3. Approximation error en(t,x) = Yn(t,x) —
u"(t,x) of the solution in V" (n = 16).

for reasons of space). The selection of the linear terms
included in each of the 15 subsystems was performed
with the help of the Orthogonal Forward Regression
algorithm (Billings et al., 1988).

The model was simulated and the resulting model pre-
dicted output was compared with the coordinate vector

u"(t) corresponding to the orthogonal projection of
the original solution u" = P,u(t, x) on the approxima-
tion subspace V" yn(t). The prediction error vector
en(t) = Yn(t) — u"(t) is plotted in figure 2 and the
corresponding approximation error of the solution in
the V" subspace ey (t,x) = ¥n(t,x) — u(t,x) is plotted
in figure 3.



Fig. 4. Prediction error Up(t) — u"(t) for the standard
Galerkin model.

A standard finite element Galerkin discretisation was
derived using the same linear B-splines basis with
n = 16, defined with respect to the uniform mesh
O,%,%,...,l. This leads to the following system of
differential equations

n d —n _ wh=n
M i (t) =K"u"(t) (21)

where M" denotes the Gramm matrix corresponding
to the linear B-spline basis {(p]-n ]1:15

1
" = (M) = { / <pi“<x><oj“<x>dx} @)
0
and the stiffness matrix K is given by
1
K" = [K]}] = { / D<pP(x>D<p,-”(x>dx} 23)
0

The system was integrated using a stiff differential
equation solver with a very fine integration step dt =
0.25-10~4. The resulting coordinate vector U"(t) was
compared with the same coordinate vector u"(t) cor-
responding to the orthogonal projection of the origi-
nal solution on the approximation subspace V". The
error vector n(t) =T"(t) — u"(t) is shown in figure 2
and the corresponding approximation error e"(t,x) =
u"(t,x) — u"(t,x) in V" is shown in figure 3.

From the figures 2, 3, 4 and 5 it is evident that the
identified model approximates far better the solution
of the original PDE equation in the V" subspace than
the finite element Galerkin model. In particular the
NRMSE of &n(t) is 0.3-1072 % compared with the
NRMSE of &s(t) which is 0.58 %.

In order to compare the two models in terms of num-
ber of parameters, equation (21) is written in equiva-
lent form as

—u"(t) = (M")TK"T"(t) (24)
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Fig. 5. Approximation error en(t,x) = yn(t,x) —
u"(t,x) of the solution in V" (n = 16).

which has 225 nonzero parameters compared with the
estimated discrete-time MIMO-AR model which has
only 97 parameters.

Moreover, it should be noted that the model (21)
is a continuous-time model which should have been
further discretised in time in order to perform a fair
comparison. The process of translating (21) into a
discrete-time model, will normally introduce addi-
tional approximation errors or could produce an un-
stable model.

5. CONCLUSIONS

The above analysis has shown that the finite element
discretisation obtained by system identification are
more accurate and more parsimonious than the stan-
dard finite element Galerkin discretisations derived
over the same finite dimensional approximation sub-
space.

The system identification approach analysed in this
paper can be used both when the governing evolution
equations which characterise a distributed parameter
system are known and in the cases when only pro-
cess measurements are available. When the PDE’s are
known an initial high-order approximation derived by
standard discretisation methods from the known equa-
tions can be replaced by a simpler model estimated
from the simulated data.
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