
DISCRETE TIME DISSIPATIVENESS ON THE
DIPOLYNOMIAL RING 1

Osamu Kaneko 2 Takao Fujii

Graduate school of Engineering Science, Osaka University,
Machikaneyama,Toyonaka,Osaka,560-8531,Japan

Abstract: In this paper, we consider discrete time dissipativeness on quadratic
difference forms and two-variable dipolynomial matrices. We show that if a system
is dissipativeness for a supply rate on the dipolynomial ring, then there also exist
storage functions and dissipation rates on the dipolynomial ring. Moreover, we clarify
whether extremal storage functions for a given supply rates on the dipolynomial ring.
This generalization is effective to extend dissipation theory in discrete time from the
theoretical points of view.

Keywords: Dissipativeness, behavioral approach, dipolynomial matrices, quadratic
difference forms, storage functions

1. INTRODUCTION

Dissipativeness is one of the most important
properties in dynamical systems (cf. (Willems,
1972),(Trentelman and Willems, 1997),(Willems
and Trentelman, 1998), and (Weiland andWillems,
1991)). The reason is that various important sys-
tem characteristics, e.g., bounded realness, pos-
itive realness, and so on, can be formalized as
dissipativeness. Recently, Willems and Trentel-
man developed quadratic differenctial forms and
two variable polynomial matrices (Willems and
Trentelman, 1998) as mathematical tools to gen-
eralize the notion of dissipativeness of linear dy-
namical systems. And then, many results based
on generalized dissipativeness based on quadrtaic
differential forms and two variable polynomial ma-
trices has been provided in e.g., (Fagnani and
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Willems, 1997), (Rapisarda and Willems, 1997)
and so on.

The discrete time version of dissipativeness also
plays very crucial roles and is used to derive var-
ious tools of synthesis and analysis for discrete
time systems. Particularly, filtering problems are
also one of the specific topics in discrete time.
The reason for this is that filters are used to ob-
tain desired signals from noisy discrete time data.
If we can develop the discrete time dissipative-
ness, we obtain useful filtering algorithms which
are applicable to the actual discrete time data
in a behavioral framework similarly to (Fagnani
and Willems, 1997). Moreover, interpolation prob-
lems like Nevanlinna-Pick are also deeply related
to discrete time dissipativeness. In fact, Rapis-
arda and Willems consider sub-space Nevanlinna-
Pick interpolation problems and the most power-
ful unfalsified model based on dissipativeness and
quadratic differential forms in continuous time (cf.
(Rapisarda and Willems, 1997)). The notion of the
most powerful unfalsified model is concerned with
modeling, which is also a specific topic for discrete
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time data. Thus, discrete time dissipativeness will
be useful to solve discrete time interpolation prob-
lems so as to obtain effective algorithms that can
be applied to actual data. Hence, dissipativeness
in discrete time is an important notion as in the
continuous time case.

From this motivation, we suggested quadratic dif-
ference forms in order to develop the discrete time
dissipativeness based on two variable polynomial
matrices in (Kaneko and Fujii, 2000) and (Kaneko
and Fujii, 1998). Although it is enough to focus on
the polynomial ring, the notion of dissipativeness
on the dipolynomial ring should be also studied
for the sake of genertalization of dissipation the-
ory for discrete time systems. Particularly, it is
natural to consider that dynamical system can be
described by dipolynomials in the discrete time, we
must develop dissipation theory so as to fit such
repreentations.

In this paper, thus, we generalize the notion of dis-
crete time dissipativeness on dipolynomial rings.
Concretely, we provide quadratic difference forms
induced by two variable dipolynomial matrices.
We show that if a system is dissipativeness for a
supply rate on the dipolynomial ring, then there
also exist storage functions and dissipation rates
on the dipolynomial ring. Moreover, we clarify
whether extremal storage functions for a given
supply rates on the dipolynomial ring. This gener-
alization is effective to extend dissipation theory in
discrete time from the theoretical points of view.

2. PRELIMINARIES

Let Z, R, and C denote the set of integers,
real numbers and complex numbers, respectively.
The notation Rq (Cq) denotes the set of real
(complex, respectively ) vectors of size q. For
λ ∈ C, λ̄ denotes the conjugate of λ. For a ∈ Rq,
‖a‖2:=aTa. For a ∈ Cq, a∗ denotes the conjugated
transpose of a and ‖a‖2:=a∗a. Let Rp×q denotes
the set of real matrices of size p× q. Let R∗×∗ (R∗

) denotes the set of matrices (vectors, respectively)
whose size are suitable.

Let (Rq)Z denote the set of real time series vectors
of size q. For w ∈ (Rq)Z , the shift operator σ is
defined by (σw)(t) := w(t + 1). By using σ, the
backward shift of w is also defined by (σ−1w)(t) :=
w(t − 1). The notation lq2 is the set of square
summable time series vectors of size q, i.e., w ∈lq2
means that

∑t=∞
t=−∞ ‖w(t)‖2< ∞.

Let R[ξ] denote the set of polynomials in the
indeterminate ξ with coefficients in R. Similarly,
R[ζ, η] denote the set of two-variable polynomials

in the indeterminates ζ and η with coefficients
in R. In addition, let R[ξ−1, ξ] denote the set of
(one variable) dipolynomials (or two-sided poly-
nomials) with coefficients in R, i.e., an element
of R[ξ−1, ξ] consists of not only nonnegative but
also negative powers of indeterminate ξ. Similarly,
let R[ζ−1, ζ, η−1, η] denote the set of two-variable
dipolynomials in the indeterminates ζ and η with
coefficients inR. The set of matrix version of them
are written respectively by Rp×q[ξ], Rp×q[ζ, η],
Rp×q[ξ−1, ξ] and Rp×q[ζ−1, ζ, η−1, η] for real co-
efficient matrices of size p × q. Note that the de-
terminant of unimodular matrix of Rq×q[ξ−1, ξ] is
descried by αξd with α �= 0 ∈ R and d ∈ Z. We
use the symbol ’λ’ in order to denote element of
C and ′ξ′ in order to denote the indereminate of
one-variable polynomials and dipolynomials. For
a nonsingular polynomial matrix D(ξ) ∈ R∗×∗[ξ],
we call it Hurwitz (anti-Hurwitz) if det(D(λ)) �= 0
for all λ ∈ C such that |λ| ≥ 1 ( |λ| ≤ 1,
respectively).

3. QUADRATIC DIFFERENCE FORMS AND
TWO-VARAIBLE DIPOLYNOMIAL

MATRICES

Quadratic difference forms are appropriate math-
ematical tools related to discrete time dissipa-
tiveness. They are used throughout this paper,
so we introduce some necessary definitions and
properties briefly. The following materials are sim-
ilar to those introduced in (Willems and Trentel-
man, 1998) and (Kaneko and Fujii, 2000) the
continuous time case and the discrete time case,
respectively. In the discrete time case, the set of
polynomials were treated. However, in order to ob-
tain more general result from the theoretical point
of view, we should consider dipolynomials as well
as polynomials . Thus, we expand quadratic dif-
ference forms induced by two-variable polynomials
to those induced by two-variable dipolynomials as
follows.

An element of Rp×q[ζ−1, ζ, η−1, η] is described by

Φ(ζ−1, ζ, η−1, η) =
∑

k,l

Φklζ
kηl. (1)

The sum in Eq.(1) ranges over not only the
nonnegative integers but also the negative inte-
gers and is assumed to be finite, and Φkl ∈
Rq×q. For Φ(ζ−1, ζ, η−1, η) ∈ Rp×q[ζ−1, ζ, η−1, η],
let Rq×q

s [ζ, η] denote the set of two-variable
polynomial matrices satisfying Φ(ζ−1, ζ, η−1, η) =
Φ(η−1, η, ζ−1, ζ)T . For all w ∈ (Rq)Z , Φ(ζ−1, ζ,
η−1,η) ∈ Rq×q

s [ζ−1, η−1, ζ, η] induces a quadratic
difference form QΦ : (Rq)Z 
→ RZ as defined by



QΦ(w)(t) :=
∑

k,l

w(t + k)TΦklw(t+ l). (2)

Given Φ(ζ−1, ζ, η−1, η) ∈ Rq×q
s [ζ−1, η−1, ζ, η], by

replacing the indeterminates ζ and η with ξ−1 and
ξ, respectively, we obtain a one-variable dipoly-
nomial matrix Φ(ξ, ξ−1, ξ−1, ξ) ∈ Rq×q[ξ−1, ξ]. In
order to avoid the confusion, we use the notation
defined by

∂Φ(ξ−1, ξ) := Φ(ξ, ξ−1, ξ−1, ξ) ∈ Rq×q[ξ−1, ξ]. (3)

For a given Φ(ζ−1, ζ, η−1, η) ∈ Rq×q
s [ζ−1, η−1, ζ, η],

we define the following indecies

N(Φ)(+) := min{n′ ∈ Z s.t. Φkl = 0,∀ k, l > n′}
N(Φ)(−) := max{m′ ∈ Z s.t. Φkl = 0,∀ k, l < m′}.
The nonnegativity of quadratic difference forms
induced by Φ(ζ−1, ζ, η−1, η) ∈ Rq×q

s [ζ−1, η−1, ζ, η]
are defined by

Φ(ζ−1, ζ, η−1, η) ≥ 0 :⇔ QΦ(w)(t) ≥ 0∀w ∈ (Rq)Z

and ∀t ∈ Z. (4)

4. DISCRETE TIME DISSIPATIVENESS ON
THE DIPOLYNOMIAL RING

4.1 Supply rates, storage functions, and dissipation
rates

At first, QΦ(w) induced by Φ(ζ−1, ζ, η−1, η) ∈
Rq×q

s [ζ−1, η−1, ζ, η] can be regarded as the power
entering into the physical system Σ = (Z,Rq,B).
The reason for this is that the power will be de-
scribed by characterizing a quadratic expression
involving system variables and its shifted vari-
ables, in terms of the dynamics of system variables
similarly to the continuous time case. By using
quadratic difference forms, we can formalize dis-
sipativeness of discrete time dynamical system as
follows.

Definition 4.1. Let Φ(ζ−1, ζ, η−1, η) ∈ Rq×q
s [ζ−1,

η−1, ζ, η] induce a supply rate QΦ(w).

1. Σ = (Z,Rq,B) is said to be dissipative for a
supply rate QΦ(w) if

∑t=∞
t=−∞ QΦ(w)(t) ≥ 0,

for all w ∈ B⋂
lq2.

2. QΨ(w) induced by Ψ(ζ−1, ζ, η−1, η) ∈ Rq×q
s

[ζ−1, η−1, ζ, η] is said to be a forward storage
function of Σ = (Z,Rq,B) for the supply rate
QΦ(w), if

QΨ(w)(t + 1)−QΨ(w)(t) ≤ QΦ(w)(t) (5)

for all t ∈ Z and for all w ∈ B.

3. Q∆(w) induced by ∆(ζ−1, ζ, η−1, η) ∈ Rq×q
s [

ζ−1, η−1, ζ, η] is said to be a dissipation rate
of Σ = (Z,Rq,B) for the supply rate QΦ(w),
if

∑t=∞
t=−∞QΦ(w)(t) =

∑t=∞
t=−∞ Q∆(w)(t), and

Q∆(w)(t) ≥ 0 for all t ∈ Z and for all
w ∈ B⋂

lq2. ✷

As for dissipation rates, in the case of B = (Rq)Z ,
it is easy to see that

∑t=∞
t=−∞QΦ(w)(t) =

∑t=∞
t=−∞

Q∆(w)(t) for all w ∈ lq2 is equivalent to saying

∂Φ(λ−1, λ) = ∂∆(λ−1, λ) (6)

for all nonzero λ ∈ C.

The relation between a supply rate, a storage func-
tion, and a dissipation rate on the dipolynomial
ring can be formalized as follows.

Theorem 4.1. Let Φ(ζ−1, ζ, η−1, η) ∈ Rq×q
s [ζ−1,

η−1, ζ, η] denote a supply rate. Assume that
the dynamical system Σ = (Z,Rq,B) has an
image representation w = W (σ−1, σ)l, where
W (ξ−1, ξ) ∈ Rq×d[ξ−1, ξ] is full column rank for
all nonzero ξ ∈ C. Then, the following four condi-
tions are equivalent.

1). For all w ∈ lq2
⋂B, ∑∞

t=−∞QΦ(w)(t) ≥ 0.
2). W (ejω, e−jω)T ∂Φ(e−jω, ejω)W (e−jω, ejω) ≥
0 for all ω ∈ [0, 2π).

3). Φ(ζ−1, ζ, η−1, η) and Σ = (Z,Rq,B) admit a
storage function.

4). Φ(ζ−1, ζ, η−1, η) and Σ = (Z,Rq,B) admit a
dissipation rate.

Moreover, for the supply rate QΦ(w) induced
by Φ(ζ−1, ζ, η−1, η) there is a one-one relation
between storage functions QΨ(w) induced by
Ψ(ζ−1, ζ, η−1, η) and dissipation rates Q∆(w) in-
duced by ∆(ζ−1, ζ, η−1, η), which is described by

QΨ(w)(t + 1)−QΨ(w)(t)

= QΦ(w)(t) −Q∆(w)(t) (7)

for all time t ∈ Z and w ∈ B or equivalently,

(ζη − 1)W (ζ−1, ζ)TΨ(ζ−1, ζ, η−1, η)W (η−1, η)

=W (ζ−1, ζ)TΦ(ζ−1, ζ, η−1, η)W (η−1, η)

−W (ζ−1, ζ)T∆(ζ−1, ζ, η−1, η)W (η−1, η). (8)

✷

The outline of the proof:

Before going to the proof, we must show that
some lemmas, propositions, and theorems proven
in (Kaneko and Fujii, 2000) also holds in the case
of Rq×q

s [ζ−1, η−1, ζ, η].



First, we consider the following lemma. The corre-
ponding proof in the case of Rq×q

s [ζ, η] was shown
in Lemma 3.1 in (Kaneko and Fujii, 2000).

Lemma 4.1. Let Φ(ζ−1, ζ, η−1, η) =
∑n

k,l=−m

Φk,lζ
kηl ∈ Rq×q

s [ζ−1, η−1, ζ, η]. Then, the follow-
ing three conditions are equivalent.

1.
∑∞

t=−∞QΦ(w)(t) = 0 for all w ∈ lq2.
2. ∂Φ(ξ−1, ξ) = 0.
3. There exists a Ψ(ζ−1, ζ, η−1, η) ∈ Rq×q

s [ζ−1,
η−1, ζ, η] such that

(ζη − 1)Ψ(ζ−1, ζ, η−1, η) = Φ(ζ−1, ζ, η−1, η).(9)

Proof of Lemma 4.1: At first, define Φ′(ζ−1, η−1,
ζ, η) := (ζη)mΦ(ζ−1, ζ, η−1, η). Clearly, this is
an element of Rq×q

s [ζ, η], so we use the notation
Φ(ζ, η) instead of Φ(ζ−1, ζ, η−1, η).

(1 ⇔ 2). By applying arbitrary w ∈ lq2 to
Φ(ζ−1, ζ, η−1, η) and Φ′(ζ, η) and summing up
from −∞ to ∞, we ontain {∑∞

−∞QΦ(w)(t) = 0,
∀w ∈ lq2} ⇔ {∑∞

−∞QΦ′(w)(t) = 0, ∀w ∈ lq2}.
It follows from Lemma 3.1 in (Kaneko and Fu-
jii, 2000) that

{∑∞
−∞QΦ′(w)(t) = 0,∀ w ∈ lq2

} ⇔{
Φ′(ξ−1, ξ) = 0

}
. Moreover, it is easy to see that{

Φ′(ξ−1, ξ) = 0
} ⇔ {

∂Φ(ξ−1, ξ) = 0
}
. From these

equivalent relations, we obtain {∑∞
t=−∞QΦ(w)(t)

= 0, ∀w ∈ lq2} ⇔ {∂Φ(ξ−1, ξ) = 0}.
(2 ⇒ 3). Again, consider Φ′(ζ−1, η−1, ζ, η) ∈
Rq×q

s [ζ−1, η−1, ζ, η] defined the previous proof.
It follows from the proof of Lemma 3.1 in
(Kaneko and Fujii, 2000) that there exists a
Ψ′(ζ, η) ∈ Rq×q

s [ζ−1, η−1, ζ, η] such that (ζη −
1)Ψ′(ζ, η) = Φ′(ζ, η). Define Ψ(ζ−1, ζ, η−1, η) :=
Ψ′(ζ, η)(ζη)−m . This is one of two-variable dipoly-
nomial matrices satisfying the condition 3.

(3 ⇒ 1). Applying an arbitrary w ∈ lq2 to Eq.(9)
and summing up from ∞ to ∞ allows us to con-
clude that the condition 1 holds . This completes
the proof of Lemma 4.1. ✷

The following lemma corresponds to Proposition
3.1 in (Kaneko and Fujii, 2000).

Lemma 4.2. Consider Φ(ζ−1, ζ, η−1, η) =
∑n

k,l=m

Φk,l ζkηl ∈ Rq×q
s [ζ−1, η−1, ζ, η]. Then, ∂Φ(λ−1,

λ) ≥ 0∀λ ∈ C such that |λ| = 1 if and only if∑−∞
t=−∞QΦ(w)(t) ≥ 0, ∀w ∈ lq2.

Proof of Lemma 4.2: Similarly to the proof
of the previous lemma, we define Φ′(ζ, η) :=
(ζη)mΦ(ζ−1, ζ, η−1, η) ∈ Rq×q

s [ζ, η]. It is easy to
see that ∂Φ(ξ−1, ξ) = Φ′(ξ−1, ξ) and

∑−∞
t=−∞ QΦ

(w) (t) =
∑−∞

t=−∞QΦ′(w)(t) for all w ∈ lq2. It

follows from Proposition 3.1 that {Φ′(ξ−1, ξ) ≥ 0
for all ξ ∈ C such that |ξ| = 1} is equivalent to
{∑−∞

t=−∞QΦ′(w)(t) for all w ∈ lq2}, so the equiv-
alence condition in this lemma also holds. This
completes the proof of Lemma 4.2. ✷

The following lemma corresponds to Proposition
3.2 in (Kaneko and Fujii, 2000), which is related
to lossless systems.

Lemma 4.3. Let Φ(ζ−1, ζ, η−1, η) ∈ Rq×q
s [ζ−1,

η−1, ζ, η] denote a supply rate. Assume that the
dynamical system Σ = (Z,Rq,B) has an image
representation w = W (σ−1, σ)l, where W (ξ−1, ξ)
∈ Rq×p[ξ−1, ξ] is full column rank for all nonzero
ξ ∈ C. Then, the following three conditions are
equivalent.

1). For all w ∈ lq2
⋂B, ∑∞

t=−∞QΦ(w)(t) = 0.
2). Φ(ζ−1, ζ, η−1, η) and Σ = (Z,Rq,B) ad-
mit a storage function, i.e. there exists a
Ψ(ζ−1, ζ, η−1, η) ∈ Rq×q

s [ζ−1, η−1, ζ, η] such
that QΨ(w)(t + 1) − QΨ(w)(t) = QΦ(w)(t)
for all time t ∈ Z and w ∈ B.

3). W (ejω, e−jω)T ∂Φ(e−jω, ejω)W (e−jω, ejω) =
0 for all ω ∈ [0, 2π).

Proof of Lemma 4.3:

(1 ⇒ 3): By connecting the supply rate induced
and the dynamical system we define Φ̄(ζ−1, η−1,
ζ, η) := W (ζ−1, ζ)TΦ(ζ−1, ζ, η−1, η)W (η−1, η) ∈
Rq×q

s [ ζ−1, η−1, ζ, η]. It follows from Lemma
4.2 that the condition 3 is equivalent to

∑∞
t=−∞

QΦ̄(w) (t) = 0 for all l ∈ lp2 . Assume that the
condition 1 holds. Since w = W (σ−1, σ)d ∈ B
is in lq2 for all d ∈ lp2 , applying an arbitrary
d̄ ∈ lp2 to

∑t=∞
t=−∞QΦ̄(l)(t) implies applying w̄ =

W (σ−1, σ)l̄ ∈ lq2
⋂B to ∑t=∞

t=−∞QΦ̄(w)(t). It fol-
lows from this observation that the condition 1
implies

∑t=∞
t=−∞QΦ̄(l)(t) = 0 for all l ∈ lp2 .

(3 ⇒ 2): Assume that the condition 3 holds. By
regarding ejω as ξ, it follows from Lemma 4.1 that
there exists a Ψ′(ζ−1, η−1, ζ, η) ∈ Rp×p

s [ζ−1, η−1,
ζ, η] such that (ζη − 1)Ψ̄(ζ−1, ζ, η−1, η) = Φ̄(ζ−1,
η−1, ζ, η). By using this dipolynomial matrix,
we define Ψ(ζ−1, ζ, η−1, η) := W †(ζ−1, ζ)T Ψ̄(ζ−1,
η−1, ζ, η)W †(η−1, η), where W †(ξ−1, ξ)∈Rp×q[ξ,
ξ] is full row rank for all nonzero ξ ∈ C
and satisfies that W †(ξ−1, ξ)W (ξ−1, ξ) = Ip.
By premultiplying and postmultiplying (ζη −
1)Ψ(ζ−1, ζ, η−1, η) by W (ζ−1, ζ)T and W (η−1, η),
respectively, we can obtain

W (ζ−1, ζ)T ((ζη − 1)Ψ(ζ−1, ζ, η−1, η))W (η−1, η)

=W (ζ−1, ζ)TW †(ζ−1, ζ)T



×((ζη − 1)Ψ̄(ζ−1, ζ, η−1, η))

×W †(η−1, η)W (η−1, η)

= Φ̄(ζ−1, ζ, η−1, η)

=WT (ζ−1, ζ)Φ(ζ−1, ζ, η−1, η)W (η−1, η).

Applying an arbitrary l ∈ (Rp)Z to this equation
yields the condition 2.

(2 ⇒ 1): This is an immediate consequence of
summing up the equation in the condition 2 from
−∞ to ∞ along an arbitrary w ∈ B ∩ lq2. This
completes the proof of Lemma 4.3. ✷

Now we go back to the proof of Theorem 4.1.

(1⇒4): Similarly to the proof of the previous
lemma, we define Φ̄(ζ−1, ζ, η−1, η) := M(ζ−1, ζ)T

Φ(ζ−1, ζ, η−1, η)M(η−1, η) ∈ Rq×q
s [ζ−1, η−1, ζ, η].

It follows from Lemma 4.2 that the condition 4⇔∑t=∞
t=−∞QΦ̄(l)(t) ≥ 0 for all l ∈ lp2 By using similar

discussion used in the proof of 1) ⇔ 3) of Lemma
4.3, we can observe that the conditoin 1 implies∑t=∞

t=−∞QΦ̄(d)(t) ≥ 0 for all l ∈ lp2 .

(4 ⇒ 3): From the spectral factorization of
∂Φ̄(ξ−1, ξ) ∈ Rp×p[ξ] there exists a D(ξ) ∈
R∗×p[ξ] such that ∂Φ̄(ξ−1, ξ) = D(ξ−1)TD(ξ)
(cf.(Popov, 1973)). Now, define new two-variable
dipolynomial matrix ∆(ζ−1, ζ, η−1, η) := M †(ζ−1,
ζ)TD(ζ)TD(η)M †(η−1, η). It is obvious that Q∆(
w)(t) = ‖D(σ)M †(σ−1, σ)w(t)‖2 ≥ 0 for all w ∈
B and t ∈ Z. Moreover, calculating

∑t=∞
t=−∞

Q∆(w)(t) for an arbitrary w ∈ lp2
⋂B yields

t=∞∑

t=−∞
Q∆(w)(t) =

t=∞∑

t=−∞
‖D(σ)M †(σ−1, σ)w(t)‖2

=
t=∞∑

t=−∞
QΦ̄(M

†(σ−1, σ)w)(t) =
t=∞∑

t=−∞
QΦ̄(d)(t)

=
t=∞∑

t=−∞
QΦ(M(σ−1, σ)d)(t) =

t=∞∑

t=−∞
QΦ(w)(t).

where the second equality of the above calcu-
lation can be obtained by Lemma 4.3. Thus,
∆(ζ, η) induces one of the dissipation rates for
Φ(ζ−1, ζ, η−1, η) and (Z,Rq,B).
(3⇒2): Assume that there exists a dissipation
rate induced by ∆(ζ−1, ζ, η−1, η) ∈ Rq×q[ζ−1

, ζ, η−1, η]. Since for all w ∈ lq2
⋂B ∑t=∞

t=−∞QΦ(w)
( t) =

∑t=∞
t=−∞Q∆(w)(t) holds, it follows from

Lemma 4.3 that there exists Ψ(ζ−1, ζ, η−1, η) ∈
Rq×q

s [ζ−1, η−1, ζ, η] such that QΨ(w)(t + 1) −
QΨ(w)(t) = QΦ(w)(t) − Q∆(w)(t) for all w ∈ B
and t ∈ Z. From Q∆(w)(t) ≥ 0, QΨ(w)(t + 1) −
QΨ(w)(t) ≤ QΦ(w)(t) for all w ∈ B and t ∈ Z.
This means an existence of the storage function.

(2⇒1): Assume that there exists a storage func-
tion induced by Ψ(ζ−1, ζ, η−1, η) ∈ Rq×q[ζ−1

, ζ, η−1, η]. Summing up QΦ(w)(t) ≥ QΨ(w)(t +
1) − QΨ(w)(t) for an arbitrary w ∈ lq2

⋂B from
t = −∞ to t = ∞ yields

∑t=∞
t=−∞ QΦ(w)(t) ≥ 0 .

Finally, one-one relation between dissipation rates
and storage functions is an immediate consequence
of Lemma 4.1 and the above discussions. This
completes the proof of Theorem 4.1 . ✷

In the case of B = (Rq)Z , Eq.(7) holds for all
w ∈ (Rq)Z , so it can be also described by

(ζη − 1)Ψ(ζ−1, ζ, η−1, η) = Φ(ζ−1, ζ, η−1, η)

−∆(ζ−1, ζ, η−1, η). (10)

4.2 The extremal storage functions

Let Φ(ζ−1, η−1, ζ, η) ∈ Rq×q[ζ−1, η−1, ζ, η] induce
a supply rate. Suppose that ∆(ζ, η) is a one of two
variable polynomial matrix inducing one of dissi-
pation rates. From the proof of Theorem 4.1, we
can see that if ∆(ζ, η) = D(ζ)TD(η) ∈ Rq×q

s [ζ, η]
induces a dissipation rate, then ∆(ζ, η)(ζη)m =
(D(ζ)ζm)TD(η)ηm also induces a dissipation rate
for all m ∈ Z. Particularly, this is a two-variable
dipolyomial matrix in the case of m < 0. All of
these dissipation rates play the same role in the
frequency domain while one of them are shifted
from the other of them in the time domain. In ad-
dition, the corresponding storage functions are dif-
ferent each other. Let Ψ(m)

∆ (ζ−1, η−1, ζ, η) denote
the correspponding storage functions satisfying

(ζ, η − 1)Ψ(m)
∆ (ζ−1, η−1, ζ, η)

= Φ(ζ−1, η−1, ζ, η)−∆(ζ, η)(ζη)m(11)
for all m ∈ Z. Then, we obtain the following
theorem relating the relationship among all of
Ψ(m)

∆ (ζ, η) .

Theorem 4.2. Let Ψ(m)
∆ (ζ−1, η−1, ζ, η) denote the

corresponding storage functions for a dissipation
rate induced by ∆(ζ, η) as stated above. Then,

Ψ(n)
∆ (ζ

−1, η−1, ζ, η) ≤ Ψ(h)
∆ (ζ

−1, η−1, ζ, η). (12)

for all n ≥ h (h, n ∈ Z).✷

Out line of the proof of Theorem 4.2:

First, we can write the following two dissipation
equiations

QΨn
∆
(w)(t + 1)−QΨn

∆
(w)(t) =



QΦ(w)(t) −Q∆(σnw)(t) (13)

and

Q
Ψ

(
∆h)
(w)(t + 1)−Q

Ψ
(
∆h)
(w)(t) =

QΦ(w)(t) −Q∆(σhw)(t). (14)

Subtracting Eq.(13) from Eq.(14) yields

QΨd
(w)(t + 1)−QΨd

(w)(t) =

Q∆(σhw)(t)−Q∆(σnw)(t).(15)

where Ψd(ζ−1, η−1, ζ, η) := Ψ(n)
∆ (ζ

−1, η−1, ζ, η)−
Ψ(h)

∆ (ζ
−1, η−1, ζ, η). Note that we can choose ar-

bitrary vectors w(t + N(Ψd)(−) + 1), · · · , w(t +
N(Ψd)(+)+1). Summing up Eq.(15) from t to −∞
yields

QΨd
(w)(t + 1) =

i=h+1∑

n

Q∆(σiw)(t) ≥ 0. (16)

Arbitrariness of w(t + N(Ψd)(−) + 1), · · · , w(t +
N(Ψd)(+) + 1) implies Ψd(ζ−1, η−1, ζ, η) ≥ 0,
which completes the proof. ✷

The above theorem says that the storage function
corresponding a dissipation rate Q∆(w) is greater
than any storage function corresponding forward
shift of Q∆(w).

Next, we can obatin the following thereom relating
to the existence of extremal storage functions
under the restricted condition.

Theorem 4.3. Let Φ(ζ−1, η−1, ζ, η) induce a sup-
ply rate. Assume that ∂Φ(e−jω, ejω) > 0 for all
ω ∈ [0, 2π). For any m ∈ Z, define

Ψ(m)
+ (ζ−1, η−1, ζ, η)

:= (Φ(ζ−1, η−1, ζ, η)−A(ζ)TA(η)(ζη)m)/(ζη − 1)
Ψ(m)

− (ζ−1, η−1, ζ, η)

:= (Φ(ζ−1, η−1, ζ, η)−H(ζ)TH(η)(ζη)m)/(ζη − 1)
where A(ξ), H(ξ) are polynomial matrices satisfy-
ing

∂Φ(ξ−1, ξ) = A(ξ−1)TA(ξ) = H(ξ−1)TH(ξ)

and det(H(ξ)) is Hurwitz, and det(A(ξ)) is anti-
Hurwitz. Then, for any storage functionΨ(ζ−1, η−1,
ζ, η) satisfying N(Ψ)(−) ≥ N(Ψ(m)

− )(−),

Ψ(m)
− (ζ−1, η−1, ζ, η) ≥ Ψ(ζ−1, η−1, ζ, η)

holds, and for any storage functionΨ(ζ−1, η−1, ζ, η)
satisfying N(Ψ)(+) ≤ N(Ψ(m)

+ )(+)

Ψ(ζ−1, η−1, ζ, η) ≥ Ψ(m)
+ (ζ−1, η−1, ζ, η).

holds. ✷

5. CONCLUSION

This paper deals with dissipativeness on the
dipolynomial ring. As a result, we have shown that
it is also possible to formalize the dissipativeness
on the dipolynomial ring in discrete time and the
existence of extremal storage functions. The gen-
eralization presented in this paper will be effective
to extend dissipation theory in discrete time from
the theoretical points of view.
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