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Abstract: In the paper, the dynamic model of a lighting system is taken into
account and a simple control strategy for controlling the load voltages is presented.
All the main components of the electronic system (supply, rectifier, capacitive
filter, inverter, etc.) have been modelled in details by using the graphical modelling
technique named Power-Oriented Graphs. A control strategy for minimizing the
neutral current iy is also presented. Simulation results show the effectiveness of

the presented control strategies.
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1. INTRODUCTION

In the most of the actual lighting systems the
load voltages are controlled by using an electro-
mechanical driving system (see Fig. 1): the desired
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Fig. 1. Electro-mechanical control of the voltage.

load voltages V1, on the lamps are determined by
the cursor position € of the autotransformer. This
electro-mechanical control system is slow, inaccu-
rate in the transient and subject to mechanical
wear. For solving these problems, in this paper
a new electronic control system is presented and
analyzed. All the main components of the lighting
system have been modelled by using a graphical

technique named Power-Oriented Graphs (POG),
see (Zanasi, 1991) and (Zanasi, 1994). A con-
trol strategy for controlling the voltages on the
lamps is also presented. The effectiveness of the
control strategy is tested in simulation and then
optimized trying to minimize the neutral current.
The paper is organized as follows. The controlled
system and the control requirements are described
in Section 2. The POG dynamic model of the
lighting system is presented in Section 3. A simple
control strategy for controlling the voltages on the
lamps and an algorithm for the minimization of
the neutral current iy are described in Section 4
together with simulation results that validate the
proposed control strategies.

2. CONTROLLED SYSTEM

The electric scheme of the considered lighting
system is shown in Fig. 2. It is composed of five
blocks: three-phase power, graetz rectifier, capac-
itive filter, IGBT inverters and the loads. The
three-phase 220 Vrms power supply provides a set
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Fig. 2. Electric scheme used for controlling the output voltages Vi, of the lighting system.

of three direct phase voltages: E = [61,62,63]T.
In this block, the supply internal resistances Ryp;,
i = {1, 2,3} are also considered. The second block
is a simple three-phase full wave diode rectifier
that converts the AC three-phase voltages into
a DC voltage. The third block is the capacitive
filter whose purpose is to reduce the ripple on the
voltages va(t) and vg(t), see Fig. 2. The IGBT
inverters are driven by the control vector u(t)
[ur (£),us(t), . .. um(#)]". The loads are composed
by lines of lamps connected in shunt. For each line
of lamps a couple of IGBT is necessary. In Fig. 2
the case of m lines of lamps is shown. The number
of lamps for each line is not determinabile, so the
loads are usually not balanced.

2.1 Control requirements

The control vector u(t) has to be chosen to satisfy
the following requirements:

(1) The load voltages V; must be sinusoidal
despite of the voltage ripple on the A and
B points.

The load voltages V should have an am-
plitude of 220 Vrms +2%, even in presence
of a fluctuation of £10% of the three-phase
supply.

The neutral current ¢y should be minimized
to optimize the energy dissipation.

(2)

3)

3. DYNAMIC-MODEL OF THE LIGHTING
SYSTEM

3.1 Power-Oriented Graphs: basic concepts

The main idea of this graphical technique is to
use the “power interaction” between sub-systems
as basic element for modelling. The “bond graph”
technique (Paynter, 1961), (Karnopp, 1975) is
based on the same idea, but uses a different graph-
ical representation. By keeping “coupled” the
variables which are “conjugate” with respect to

power, these graphical techniques provide graph-
ical dynamic models which, usually, are intuitive
and easy to use. The “Power-Oriented Graphs”
are “signal flow graphs” combined with a partic-
ular “modular” structure essentially based on the
two blocks shown in Fig. 3. The basic character-
istic of this structure is the direct correspondence
between pairs of system variables and real power
flows: the product of the two variables involved
in each dashed line of the graph has the physical
meaning of “power flowing through the section”.
The two basic blocks shown in Fig. 3 are named
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Fig. 3. Basic blocks: elaboration block (e.b.) and
connection block (c.b.).

“elaboration block” (e.b.) and “connection block”
(c.b.). The inner product (x,y) = xTy must have
the physical meaning of a “power”. The e.b. and
the c.b. are suitable for representing both scalar
and vectorial systems. While the elaboration block
can store and dissipate energy (i.e. springs, masses
and dampers), the connection block can only
“transform” the energy, that is, transform the
system variables from one type of energy-field
to another (i.e. any type of gear reduction). For
a more detailed description of the POG graphi-
cal technique, please refer to (Zanasi, 1991) and
(Zanasi, 1994).

3.2 POG model of the lighting system

The multi-dimensional POG model of the electric
scheme of Fig. 2, is shown in Fig. 4. Observe the
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Fig. 4. POG dynamic model of the lighting system.

direct correspondence between the POG blocks
and physical elements of the electric scheme. The
variables which are present in the POG model are
the following: E = [61,62,63]T is the supply volt-
ages vector, I = [il,ig,ig]T is the corresponding
currents vector, Vo = [vA,vB]T = [v01,vCO]T
is the vector of the voltages at points A and
B, Vp = [vp1,... ,UDG]T is the diodes voltages
vector. The matrices Ty, T, C and D are defined
as follows:

100-10 0
r-fo 10050 |- [tr 0 0 0]
loo1 0 0-1]

C; 0 .
C= [ 0100} . D=diag [¢1@p1),. - - ,96@D6)]

where g;(vp;) are the nonlinear conductance func-
tion describing the diode electrical behavior. The
IGBT inverters are controlled by using the PWM
technique with a switching frequency sufficiently
high to consider true the following relation, see
(Espinoza et al., 2001):

vLi(t) = uivp(t) + (1 —ui) va(t) (1)

where u; € [0,1]. If u; = 0 = wvr;(t) = va(t),
if u; =1 = vgi(t) = vp(t). The transformation
matrix U realizes the inverter ideal function (1):
U= 1—ur 1—us ... 1—uy,

(5% U2 e Um

Note that matrix U is a function of the con-
trol vector u = [ul,. .. ,um]T. The lamps-loads,
roughly approximated as linear elements, can be
described by using the following resistance and
inductance matrices:

R 0 ... O L1 0 ... 0
0 Rrs... O 0 Lzs... O
R=| . . . . |,L=| . . .
0 O ...Rim 0 0 ...Lpm
The vectors Vi, = [vL1,0L2,. .. ,vLm]T and Iy =

[iL1sin2, - iLm] " represent the load voltages and
load currents.

4. PROPOSED CONTROL LAWS
4.1 Sinusoidal load voltages

To cope with requirement (1) of Section 2.1, the
following load voltages have to be imposed:

VLi (t) =V sin(w t+ (,02) (2)

where V7, are the voltage amplitudes, ¢; are the
phase angles, w = 27 f and f = 50 Hz is the
frequency of the sinusoidal signals. To impose
these voltages, two different control laws can be
used.

1) The first control law is the following:

The value % is necessary for the IGBT polariza-
tion. This is the simplest “feed-forward” control
law which tries to satisfy requirement (2) of Sec-
tion 2.1 without using any sensor. Unfortunately,
it can not impose perfect sinusoidal voltages on
the loads because the two intermediate voltages
va(t) and vp(t) are time-varying and unknown.

sin(wt + ¢;) (3)

2) The second control law can be easily obtained
by inverting relations (1)-(2), in fact:
va(t) — Viisin(wt + ¢;)

wl) = T — s @) w

This control law ensures perfect sinusoidal volt-
ages on the loads, but it can be used only if the two
voltages v4(t) and vg(t) are known. The phase
angles ; are free parameters that will be used for
the minimization of the neutral current iy, see
Section 4.3.

Simulation results showing the effectiveness of
the two proposed control laws (3) and (4), are
reported in Fig. 5. The parameters used in simu-
lation are: m = 3, |e;| = 220v/2 V, ry = 0.1 Q,
CO = Cl =2 IIIF, RL1 =71 Q, RL2 =125 Q,
Rr3 =10 Q, Ly = 14.08 mH, Lz, = 24.64 mH,
Lz = 19.71 mH, o1 = 0, ¢ = 120° and
3 = 240°. The simulation has been divided in
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Fig. 5. Time behavior of voltages and currents on
the load.

four time intervals Aty, Ats, Ats and Aty. In
each time interval a different control law has been
used. In the first time interval A#¢; the control
u=0 has been used, obtaining the load voltages
vri(t) = va(t). The load currents I, have different
amplitudes because the impedances of the loads
are different. In Fig. 5 the neutral current iy is
also reported in solid thick line. In the second time
interval Aty the control law wu;(t) = #(?B(t)
has been applied. In steady state condition it
ensures zero load voltages V=0 and zero load
currents I;,=0. In the third time interval Atz
the feed-forward control law (3) has been applied.
From the figure, it is evident that the ripple on the
voltages v4(t) and vp(t) is partially transferred to
the load voltages, and so the load currents are not
perfectly sinusoidal. In the last time interval Aty
the proposed control law (4) has been used. From
Fig. 5 it is evident that now the voltages V1, and
the currents I;, are perfectly sinusoidal.

4.2 Load voltages amplitude

From Fig. 5 it is easy to see that the load peak
voltages do not reach the voltage +£220+/2 re-
quired by the control requirement (2) of Section
2.1. In fact, due to the presence of losses in the
rectifier and in the inverters, the required load
voltage 220 Vrms cannot be reached if the ampli-
tude of the input voltage is 220 Vrms. To increase
the maximum value of the load voltages V, is nec-
essary to increase the voltages at the points A and
B. A boost circuit for charging the capacitors C;
and Cy at the desired values is a possible solution,
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Fig. 6. Phase angles ¢; and relative angles 6;.

but it is very expensive. A cheaper and simpler
solution is the insertion of an autotransformer at
the input of the rectifier. By properly choosing
the transformation ratio 7 of the autotransformer
one can ensure load voltages V, of 220 Vrms even
in the presence of a fluctuation of +10% on the
amplitudes of the supply voltages E.

4.8 Minimization of the neutral current

The neutral current iy is given by relation:
m
=D L (5)
=1

that is, the current iy is zero only when the
sinusoidal load currents ir; are balanced. If in
control law (4) one chooses p1 = 0, po = 120°
and @3 = 240, the load voltages V1, are balanced
and the neutral current iy is zero only if the
three load impedances are equal. See for example
the time internal At, shown in Fig. 5: in this
case the current in is not zero because the load
impedances used in simulation are not balanced.

4.3.1. Neutral current minimization: ideal case
The neutral current iy can be minimized by
properly acting on the phases ¢; of the control
inputs u; given in (4). In fact, the control inputs u;
induce sinusoidal load voltages Vi characterized
by the same phase angles ¢;, see eq. (2). If linear
loads are considered, the load currents ir; are si-
nusoidal too, but with phase angles depending on
the load impedances. So, with a proper choice of
the phase angles ¢;, one can minimize the neutral
current iy, see (5). In steady state condition, the
amplitude I of the sinusoidal current iy can be
expressed as follows:
T Vel v
Z RLz + .]w LLz

i=1

(6)

For the Iny minimization is not important the
actual values of the angles ;, but the relative
angles 03 = w2 — 1 and 05 = 3 — @1, see Fig. 6
for the case m = 3. These two angles 6, and 63
can be considered as the new control inputs for
the minimization problem. In the ideal case, if the
impedance parameters Ry; and Lp; are known,
one can easily verify that the neutral current i
is zero when:
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Fig. 8. Control of the neutral current ¢n: load
voltages and load currents.
O =as—a; £ P O3=az—ar Pz (7)
where a; = arctan(w Lr;/Rr;i), i = {1,2,3} and

V2 1-V3 )
2 Vs 3
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p=— VL1 D1 — OV L,
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The two solutions (7) satisfy the following com-

plex expression, see Fig. 7 (a),

Vs elB2 4 Vs ePs 11 =0 (9)

V2 1-VZ )

Bs=—arccos( 25,

B2=arccos(

which is verified only if:

Va+ Vs > 1, Vs =T2[<1  (10)

When these inequalities are not satisfied, the
amplitude Iy cannot be zero. In this case the
minimum value of Iy is obtained if in (7) the
following parameters are used, see Fig. 7 (b):

fo=m, Bs=7 if Vet+Vs<1
Ba=m, f3=0 if (Ve+e>D)A(—1>1)  (11)
B2=0, B3=m if (Va+Va>1)A(Va=Vz>1)

Simulation results referring to case (7) are shown
in Fig. 8. The simulation parameters are the same
used in Fig. 5 with |e;] = 195v/2 V and with
the presence of an autotransformer with 7 = 1.2.
In the first time interval At¢; the control signals
ui(t) = #(Z)B(t) ensure Vy, = 0. The control
law (4) has been used in the second time interval
Ats: the amplitudes and the phase angles used
in this case are: |vr;| = 220v/2, 6, = 120° and
f; = 240°. The neutral current iy is not zero
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Fig. 9. Feedback control scheme for the minimiza-
tion of the neutral current 7.
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Fig. 10. Flow chart of the minimization algorithm.

because the load currents are not balanced. In
the third time interval Atz the control law (4) has
been used with phase angles satisfying the relation
(7) and (8): 62 = 136° and A3 = 214°. In this case,
the neutral current ¢ rapidly converges to zero.

4.8.2. Minimization current algorithm  The re-
lations (7) can be used only if the loads parame-
ters are known. Unfortunately, the resistances Ryp,;
and the inductances Ly; are typically unknown.
A possibile solution of this problem is the use
of the feedback control scheme shown in Fig. 9:
a current sensor measures the current iy and a
properly designed control algorithm modifies the
phase angles 6> and 63 trying to minimize the
amplitude Iy of the sinusoidal neutral current 7.
The flow chart of the minimization algorithm is
reported in Fig. 10. The algorithm acts as follows:
it measures the current amplitude Iy; it evaluates
the gradient g—ad)(IN) = [?TZ?TJ;]T by adding
little phase increments Afy, Afs to phase angles
f; and 63; the gradient vector grqiy(f ~) is the
maximum growing direction of the function Iy =
f(62,05) and therefore the current iy decreases
if the new phase angles 6, and 63 are chosen
with increments opposed to the gradient direction.
This dynamic behavior can be described by the
following discrete equations:

(02)k+1 = (62)k — Ok (%)k

(03)k+1 = (03)k — O& (%)k



where ¢, is the step amplitude that can be cho-
sen constant or function of the current ampli-
tude Iny. The proposed algorithm has been de-
signed to be always active: in this way, if the
load impedances change, the algorithm is able to
track the movement of the new minimum point.
This algorithm can also be used for nonlinear
loads (for example neon lamps) if, in steady state
conditions, the function Iy (62, 63) has only one
minimum point. A mesh representation of the
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Fig. 11. Mesh plot of function In = f(62,03).

function Iy = f(#2,03) obtained from (6) is
shown in Fig. 11. The loads parameters used in
this case are: R;1=7.1 ), R;>=30 Q, R;3=40 Q,
L;1=14.1 mH, L;5=24.7 mH and L;3=19.8. The
initial conditions are: #; = 120°, 63 = 240° and
Iy = 287 A. In Fig. 11 it is also reported the
trajectory obtained by using the proposed mini-
mization algorithm. The contour plot of function
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Fig. 12. Contour plot of function In = f(2,63).

In = f(2,03) together with the obtained trajec-
tory are shown in Fig. 12. The algorithm slowly
reaches the point 6, = 162.5°, 63 = 159° and
In = 19.3 A, which corresponds to the minimum
point that can also be obtained by using the rela-
tions (7), (8) and (11). In this case the amplitude
In of the return current ¢y does not reach the
zero value because the load parameters used in

simulation do not satisfy relation (10). In fact, in
this case we have V5, = 0.27, V3 = 0.20, 2 = 7
and f3 = 7: it is the case shown in Fig. 7 (b).

5. CONCLUSIONS

In this paper the problem of modelling and simu-
lating a lighting system has been considered. All
the components of the system have been modelled
by using the Power-Oriented Graphs technique.
Simple control laws for controlling the load volt-
ages V and for minimizing the neutral current
in have been also proposed. The performance
of the controlled model has been tested through
simulation experiments.
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