
A POLYNOMIAL ALGORITHM FOR THE MPS PARAMETERIZATION
UNDER UNCERTAINTY

Mohamed-Aly Ould-Louly and Alexandre Dolgui

Lab. of Industrial Systems Optimization
University of Technology of Troyes

12, Marie Curie st., BP2060,10010 Troyes cedex, France
ph: +33 (0)325715879, fax: +33 (0)325715649

e-mail: {louly, dolgui}@utt.fr

Abstract. The aim of this paper is to study the supply planning of assembly systems
under lead times uncertainty. The target is to minimize the sum of the average
holding cost for the components and the setup cost, while keeping a desired service
level. A further analysis of the Periodic Ordering Quantity policy (POQ) is given.
The decision variables are the planned lead times of components and the periodicity
of the POQ policy. A mathematical method, which gives the optimal values for these
parameters, is given. Copyright © 2002 IFAC
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1. INTRODUCTION

The paper deals with the problem of Master
Production Schedule (MPS) parameterization under
lead time uncertainty. A particular case is studied
where the demand level is considered constant. For
this case the policies without nervousness (Dolgui and
Ould-Louly 2002) can be adopted. In fact, the
planning change is due to the cumulative demand
uncertainty. When the demand is constant there is no
need to change, and the MPS can be frozen on the
total planning horizon. The problem with constant
demand appears, for example, in mass production.

MRP begins with the end-product need date and uses
the lead time to calculate the components release date.
Clearly, the calculation doesn't take into account the
actual lead time because it isn't known at this moment.
The calculation uses a forecast parameter called
planned lead time. Melnyk and Piper (1981) proposed

a forecast method for the planned lead time which is
issued from the methods used for random demand:

Planned lead time =
 = lead time forecast + safety lead time
 = lead time mean + k lead time standard deviation.

However the Wemmerlov's study (1986) shows that
the errors of forecast increase the inventories and, in
the same time, decrease the customer service level.
Molinder (1997) studies this problem. Instead of
forecasting, he proposes simulated annealing to find
good safety stock and safety lead time. His results
show that high planned lead time gives excessive
inventory, and small planned lead time gives
shortages and delays.

Whybark and Williams (1976) found the use of safety
lead time more efficient than safety stock. Grasso and
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Tayor (1984) give an opposite conclusion, their
simulations find more prudent safety stocks.

As shown, there are a lot of simulation studies dealing
with this problem, and there are a lot of studies
dealing with the formulation problem, but in our
knowledge, there is no exact mathematical method
giving the optimal planned lead times.

A particular supply planning problem under lead time
uncertainties concerns assembly systems. In fact, for
assembly systems, several types of components are
needed to produce one finished product. So, the
inventories of the different types of components
become dependent. Then the supply planning
becomes more difficult.

There are some contributions which propose
mathematical solutions, but their studies are limited to
a single-period problem and do not take into account
the dependence between periods. For example the
Chu et al. (1993) model gives optimal values of the
planned times in assembly systems, but only for the
single-period problem. The mathematical formulation
of the multi-period problems under lead times
uncertainty is more difficult.

In the multi-period, orders may cross, that is, they
may not be received in the same sequence in which
they are placed (He et al., 1998). Some contributions
assume that orders do not cross, then they solve,
under this assumption, the single-item problem
(Graves et al., 1993).

Another problem for assembly systems is the
dependence between inventories. Wilhelm and Som
(1998) studied this problem and showed that a
renewal process can describe end-item inventory level
evolution, but they did not study the dependence
between component's inventories.

Song et al, (2000) also used the renewal theory to
analyze supply planning problem for assembly
systems. The lead times of the components are
random. They proposed several simple heuristic
policies to compute how much to order and when to
order each component part.

The dependence between inventories is also studied
by Gurnani et al. (1996), but their assembly system
was only with two components, and the considered
lead time distribution was simple.

In all these previous models for assembly systems, the
decision variables are real, and random variables with
continuous distributions.

The paper study the MPS parameterization problem
for assembly systems, in which several types of
components are needed to produce one type of

finished products. The components lead times are
random. The objective is to find the optimal values of
the following MPS parameters: 1) planned lead times,
and 2) sizes of the lots. A Markov model that gives
the measure of the average cost is used, and the
optimal values of these parameters for the periodic
order quantity (POQ) policy are obtained.

2. PROBLEM STATEMENT

The unit holding cost hi of component i per period,
the setup cost c and the desired service level ε−1  are
known. The distribution of component i's lead time Li
is also known, and its upper value is equal to ui. The
discrete random variable k

iL  is the lead time of the
components i, ordered at the beginning of period k.

The demand D of finished products per period is
constant, and ai components i are needed to assemble
the finished product. The component lot-sizes are
determined by using the periodic order quantity
(POQ) method, with a periodicity of p periods. The
orders of components are released at the beginning of
the periods kp+1, k=0,1,2,…etc, and there is no order
release in the periods kp+r, r=2,3,…,p. Then, the
supply orders Qi of components are constant Qi=aiDp
(p is a decision variable).

The finished product demands are satisfied at the end
of each period and unsatisfied demands are
backordered and have to be satisfied during next
periods.

As the lead times are uncertain, the orders have to be
released before the need instant (the planned lead
times). But as the ordered quantities are the same,
then the planned lead times are equivalent to initial
inventories. So, the aim is to find the optimal values
of the initial inventories aiDxi, where xi, i=1,2,… n,
are the planned lead times, and the optimal values of
the parameter p of the POQ policy.

Given that the maximal value of component i's lead
time is equal to ui, only the orders made in the
previous ui-1 periods may not be arrived yet. The
orders made before already arrived. The number

m,p
iN  of component i expected deliveries at the end

of the period m=kp+r is easy to calculate.

Let

jm
iL −+1 , j=r, r+p, r+2p,…, r+ p

rui −−1 p,

be the lead times of the orders made at the beginning

of the periods kp+1, (k-1)p+1,…, (k- p
rui −−1 )p+1. The

order made in the period m+1-j is delivered after the



end of the period m when jL jm
i >−+1 , i.e. if 
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give the global state of the previous orders. In fact,
mp

iN ,  is the number of component i's orders that are
not arrived yet (at the end of the period m, they are
still waited for).

3. PERFORMANCE MEASURE

Proposition 1.
(i) There is shortage at the end of the period m=kp+r

when the following condition is true
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),,,,( ,,
1

mp
n

mp
k NNpXC L  = 11 =× rc

+ ∑ −−+
=

+n

i

rkpp
iiii pNrpxahD

1

, )(

+ ++
=

−−+ )(max ,
,,1

i
rkpp

ini
xprpNDH

L
,

where

),,( 1 nxxX L=  and ∑=
=

n

i
iiahH

1
.

The value (Z)+ is equal to max{Z, 0}.

Proof.
There is a shortage at the end of period m when the
amount of components, arrived in the inventory since
the first period, are not sufficient to satisfy the
cumulative demand D(kp+r) of the finished product.

The amount of components i needed by this
cumulative demand is equal to aiD(kp+r). The
number of orders made since the beginning until the
end of the period (kp+r) is equal to k+1, and the
number of the delivered orders is equal to (k+1-

rkp,p
iN + ).

There is a shortage if there is a component i for which
the initial inventory ii Dxa  plus the delivered amount

Qi(k+1- rkpp
iN +, ) is smaller than the cumulative

needed amount aiD(kp+r). So, there is a shortage at
the end of period m, if there is a component i
satisfying )( ,

i
rkpp

i xprpN −−++ >0. So there is

shortage if ),,( , rkpp
k NpXR + >0.

In addition, the number of satisfied demands is equal
to [kp+r- ),,( , rkpp

k NpXR + ]. The inventory m
iS  of

component i at the end of period m is equal to the
initial inventory ii Dxa  plus the delivered amount

Qi(k+1- rkpp
iN +, ) without the quantity used for the

satisfied demand:
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Given that there is a setup cost c if r=1, the sum of the
holding cost of the components and the setup cost at
the end of period m is equal to:
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This cost is a random variable. To express the cost on
an infinite horizon, a Markov chain is proposed for
which a state Z ∈  { } 11,0 −iu  is a binary vector that
describes the orders made in the previous ui-1
periods.

The average cost on the infinite horizon and the
service level (1 - average number of shortages) are:
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where E(Z) is the expected value of Z,
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To simplify these equations, let hi be the holding cost
of the amount aiD, instead of the unit holding cost.

Theorem 1.
Explicit forms for the average cost (3) and the service
level (4) are:
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So it is easy to obtain (9) from (4) and (11):
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Moreover, using the equation (11), the equation (10)
becomes:
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Using (13) in (3), the equation (8) is obtained.

In addition, it is easy to see that the components ix  of
the optimum X must satisfy 10 −≤≤ ii ux . Then, the
initial optimization problem is as follows:
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10 −≤≤ ii ux , i = 1, 2, …, n, (16)

10 −≤≤ iup . (17)

To simplify the optimization, the following
constraints (18) are considered instead of (15):
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Even after this reduction, the optimization remains
still difficult because the objective function is not
linear and the decision variables, xi, i=1,2,…,n, and p
are integer.

4. OPTIMIZATION

In this section, the problem is solved under the
assumption that holding costs of the quantities Qi=aiD
per period are the same, and the lead time Li of the
different components have the same distribution
probability. Then, the costs hi, i=1…n, can be noted

by h, and the distributions rp
iF , , i=1…n, can be

noted by rpF , .

The obtained problem will be noted by ΠΠΠΠ and an
exact method which solves this problem in
polynomial time will be given. The following
notations are used.

Ek is the set of vectors X, each vector's component is
an integer variable satisfying: ji xx = , for ki ≤  and

kj ≤ .
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kP  are applications from Ek  to Ek+1 which
are defined as follows:
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Then two vectors, )(1 XPk  and )(2 XPk , of the set Ek+1

are associated to every element X of Ek.

Theorem 2.
The following equation is true under the assumptions
of the problem ΠΠΠΠ : ∀ { }1,,2,1 −∈ nk L ,
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For each vector X of Ek, there is a vector of Ek+1
which gives a smaller cost. Precisely, at least one of
the two vectors, )(1 XPk  and )(2 XPk , gives a cost less
than the cost C(X,p): kEX ∈∀ ,

}{ 21 ]p),X(P[C],p),X(P[CMin kk
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In order to prove the theorem, it is sufficient to show
the inequality (21).

Let's suppose that (21) is false, then the two following
equations are obtained:
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The equation (22) can easily be rewritten as:
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In the same time, (23) gives:
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Using the fact that
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Using the fact that
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Equations (24) and (27) are in contradiction. Then,
the equation (21) is true.

Corollary 1.
The problem ΠΠΠΠ  has an optimal solution in which the
initial inventories have the same value for every type
of components.



Proof.
The proof is immediate by transitivity from the
equation (19):
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.

Then, there is an optimal solution

X = )...,,...,,( xxx ∈ En.

This optimal solution can be calculated using the
following theorem.

Theorem 3.
For each value of p satisfying (17), the optimum X =

)...,,...,,( xxx  which minimizes the problem ΠΠΠΠ  is
obtained when x is the smallest integer satisfying (18).

Proof.
According to corollary 1, the cost C(X,p) can be
reduced to a two-variable function ),( pxCe :
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Let G(x,p) be the following function:
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G(x,p) is positive function. Then, the value of x which
minimizes the cost Ce is the smallest integer satisfying
the constraints (16) and (18).

Finally it is ease to compute the optimal solution of
problem ΠΠΠΠ  in a polynomial time. Then we obtain the
optimal planned lead times , xi, i=1,2,…,n, and the
optimal periodicity p of the POQ policy.

5. CONCLUSIONS

The problem of MPS parameterization for assembly
systems, when several types of components are
needed to assemble one type of finished products, is
studied. The optimized parameters are the planned
lead time and the size of the lots.

The lead times of the components are independent
random variables, and the demand of the finished
product is constant. The objective is minimizing the
sum of the holding cost of components and the setup
cost while keeping a desired service level.

The proposed model takes into account the
dependence between inventory levels at different
periods, and also the dependence between the
inventories of the different types of components.
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