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Abstract: Recent results on receding horizon control of linear systems with state and
input constraints have shown that the optimal receding horizon controller is piecewise
affine and continuous, with the resulting value function being piecewise quadratic
and continuously differentiable. The purpose of this note is to exploit these results to
show that the controller renders the closed-loop system globally input-to-state stable
(ISS) when the open-loop system is stable, and locally input-to-state stable when the
open-loop plant is unstable. While the result is simple in nature, it has interesting
implications in utilizing constrained receding horizon scheme in a switching based
supervisory control framework.
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1. INTRODUCTION

Receding horizon control is the most popular
scheme for control of constrained processes. The
main idea behind receding horizon control is to
solve a finite horizon, open-loop optimal control
problem. The first portion of the optimal control
sequence is then applied to the plant, until a new
state update occurs. This procedure is then re-
peated, resulting in an implicit feedback policy. It
is well known that a naive application of this strat-
egy would lead to instability, even, in the case of
unconstrained linear systems, if the horizon length
is short. Several necessary ingredients for stability
have been identified in the literature. (See (Mayne
et al. (2000); Mayne (2001)) for an excellent up-to-
date survey of these results). While the stability
issue has been treated fairly well in the nonlinear
case, the robustness issue is not resolved even in
the linear case. Two major strategies have been
proposed in the literature for addressing the issue
of robustness. The first one poses the problem as
a min-max optimization, where the maximum is
taken over all possible realizations of the distur-
bance sequence, and the minimum is taken over

control sequences. Although some characteriza-
tions of this result exist even in the nonlinear case,
since they are of an open-loop nature, they tend
to be extremely conservative (Mayne (2001)). An
alternative choice is to search over control poli-
cies rather than control sequences. While this is
clearly less conservative, it makes the computa-
tions prohibitively complex. In the linear case,
however, due to the fact that the underlying sets
are polytopes, and because relatively efficient nu-
merical techniques exist for set theoretic manipu-
lation of polytopic sets, the problem is tractable
to a certain degree (Gilbert and Tan (1991); Kol-
manovsky and Gilbert (1998)). The purpose of
this paper is to show that the receding horizon
controller, at least locally (and globally, when the
system is open-loop stable), has some inherent ro-
bustness properties without explicitly taking the
disturbance into account. Specifically, using recent
results in explicit characterization of the receding
horizon feedback law and the corresponding value
function, we show that the closed-loop system
is input-to-state stable (ISS) since it admits an
ISS Lyapunov function (Sontag and Yang (1995)).
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Roughly speaking, if the system has finite input-
state gain, then the system is ISS. In the case
where the system is open-loop stable, and only
input constraints are present, we show that the
closed-loop system with a receding horizon feed-
back is globally ISS. When the system is unstable,
the constrained receding horizon control scheme
is stabilizing only over compact subsets of the
state space, hence the results are local. In this
case, we will use some recent results in Mayne and
Langson (2001) to obtain a compact set of initial
conditions for which the receding horizon scheme
“works” in spite of the disturbances. These results
are the first step in developing a switching based
supervisory control scheme in which the candidate
controllers are defined implicitly, as receding hori-
zon feedback controllers.

This paper is organized as follows: In section 2
we formulate the problem and review the stability
results. Section 3 we present our result for open-
loop stable linear systems with input constraints.
In section 4 we present the local ISS result for
open-loop unstable systems. Finally, we present
our conclusions in section 5.

2. PROBLEM SETTING

Our notation will be consistent with (Mayne et al.
(2000)), and we focus on the discrete-time case.
The system under consideration is

x+ =Ax + Bu

u(k) ∈ U , x(k) ∈ X k = 0 · · · , N − 1 (1)

where U is a polytope and X is a polyhedron,
x ∈ R

n, and A, B are matrices of appropriate
dimension, and the pair (A,B) is assumed to
be stabilizable. We are interested in solving the
following optimization problem

V ∗
N (x) =min

u∈U

N−1∑

i=0

(x(k)T Qx(k) + uT Ru(k))

+ F (x(N))

where x(k) = xu(i;x, 0), Q > 0, R > 0, and F (·)
is chosen to be an appropriate terminal cost. The
solution to the above optimization problem is the
optimal sequence

uo(x) := {uo(0;x), uo(1;x), · · · , uo(N − 1;x)}

The receding horizon feedback is defined for all
initial conditions in a controllability set XN , the
set of initial conditions that can be steered into
the set Xf in N steps or less. The set Xf is a
set over which there exist a feasible and stabiliz-
ing control, and applying the feasible controller
results in feasible state trajectories as well. Using

specific choices for F (·) and Xf , one can prove ex-
ponential stability of the closed-loop system under
the receding horizon feedback κN (x) := uo(0;x).
If the system is open-loop stable and there are no
state constraints, Xf = R

n, and κN (x) is globally
exponentially stabilizing. In the next section, we
will show that the above controller also makes the
system ISS.

3. RHC FOR STABLE SYSTEMS WITH
INPUT CONSTRAINTS

A stabilizing strategy for receding horizon control
of input constrained, stable linear systems was
first given in Rawlings and Muske (1993). In that
setting, the terminal cost F (·) was chosen to be
the cost incurred by flowing along the open-loop
trajectory, and is of the form xT Px where P
is the positive definite solution to the following
Lyapunov equation

AT PA − P + Q = 0.

In the absence of state constraints (X = R
n),

this choice of F will result in global exponential
stability, having Xf = R

n.

In order to analyze the ISS property for this sys-
tem, we note that recently, an explicit characteri-
zation of the solution of the linear constrained re-
ceding horizon problem has become available (Be-
mporad et al. (1999)). The solution to the con-
strained RHC problem has been shown to be con-
tinuous and piecewise affine. The resulting value
function is shown to be piecewise quadratic and
differentiable), with a piecewise affine derivative
(under some mild assumptions). The regions in
each the control is piecewise affine are the regions
where the active constraints do not change.

Using this result we can show that the the closed-
loop system is a piecewise affine system which
is globally exponentially stable with a piecewise
quadratic Lyapunov function V ∗

N (x) = x̄T Pi(x)x̄
(x̄ = [x 1]) which is continuously differen-
tiable (Bemporad et al. (1999); Mayne (2001)),
where i(·) is a switching function that maps the
state space to a finite set of indices labeling the
polytpoic partitions of the state-space. We that
since the resulting controller is piecewise affine
instead of linear, we should augment the state
with the constant 1 and re-define the A and B
matrices accordingly. It should also be noted that
there is a region around origin where the controller
is piecewise linear, i.e., the constant term is zero.
In the interest of clarity, with a slight abuse of
notation, we use the same notation as before for
the augmented system.

Several results exist for analyzing stability of
piecewise linear systems (cf. Liberzon and Morse



(1999); Johansson and Rantzer (1998)). The main
point in stability of state dependent piecewise
affine systems is that each quadratic value func-
tion be a Lyapunov function in their correspond-
ing polytopic set, and a matching condition hold
at the switching boundary (Hespanha (2001)),
i.e., the value of the Lyapunov function should
decrease or remain the same on the switching
surfaces, while it should decrease inside each poly-
topic set. In the case of receding horizon con-
trollers, due to continuous differentiability of the
value function (Mayne (2001)), and also because
there are only a finite number of partitions when
the horizon length is finite 1 , these conditions
exactly hold. We can therefor state the following
theorem:

Theorem 1. The receding horizon scheme glob-
ally input-to-state- stabilizes stable linear systems
with input constraints, with respect to additive
disturbance w.

Proof: Let x(·) be the trajectory of the system
when the additive disturbance w(·) is present.
The receding horizon feedback κN (x) is piecewise
linear (in the extended state), which makes the
closed-loop system a linear difference inclusion
with an additive disturbance.

x+ = (A − BκN (x))x(k) + w(k)

:= Āi(x(k))x(k) + w(k) (2)

where Āi(x(k)) is the closed-loop matrix corre-
sponding to the ith partition of the state space,
and i is the switching function that maps the
state space to a finite set of indices corresponding
to different polytopic regions where the active
constraints do not change. Since the disturbance-
free system is globally exponentially stable with
the piecewise quadratic value function V ∗

N (x̂), we
have

V ∗
N (Ai(x)x)− V ∗

N (x) ≤ −Cq||x||2

where Cq > 0 is the rate of exponential decay for
the closed-loop disturbance-free system. Utilizing
the fact that the value function is continuously
differentiable,we can write

V ∗
N (x+)− V ∗

N (x) = V ∗
N (Āi(x)x + w)− V ∗

N (x)

= V ∗
N (Āi(x)x + w)− V ∗

N (Āi(x)x)

+ V ∗
N (Āi(x)x)− V ∗

N (x). (3)

We now note that the controllability set XN

(which in this case is the whole space R
n) is

partitioned into a finite number of polytopes.
This, in addition to continuous differentiability

1 It is not clear whether the number of partitions remain
finite when the horizon length approaches infinity

of V ∗
N , and the fact that the value function is

piecewise quadratic, implies

||∂V ∗
N (x)
x

|| := ||Pi(x)x|| ≤ L||x||
where L := maxi λmax(Pi) and λmax is the largest
singular value. The maximum in the above equa-
tion is taken over all possible partitions. Since
there are only a finite number of partitions, the
maximum exists. We now use the above bound
on the norm of the gradient of the value function
in conjunction with the mean value theorem to
conclude the following

||V ∗
N (Āi(x)x + w)− V ∗

N (Āi(x)x)||

≤ ||∂V ∗
N (y)
∂y

||y=Āi(x)x+sw||w||
≤ L||Āi(x)x + sw||||w||

≤ L[(max
i

||Āi(x)||||x||||w||) + ||w||2), (4)

where 0 ≤ s ≤ 1. Let CA := maxi ||Āi(x)||. We
note that for any positive ε and any two signals
x, and w, we have ||x||||w|| ≤ ε||x||2 + 1

ε ||w2||. We
can now write (4) as

||V ∗
N (Āi(x)x + w)− V ∗

N (Āi(x)x)||
< LCAε||x||2 + (1 +

LCA

ε
)||w||2. (5)

Finally, we use (3) and (5) to conclude the follow-
ing (ε is a small enough constant)

V ∗
N (x+)− V ∗

N (x) ≤ (−Cq + εLCA)||x(k)||2 +
(1 +

1
ε
)LCA||w(k)||2.

Therefore the piecewise quadratic value function
is also an ISS Lyapunov function for the closed-
loop system. ✷

Remark 2. In the special case of marginally stable
systems, i.e., systems with simple poles on the
imaginary axis, one can show that the exponential
stability of the receding horizon scheme is semi
global, i.e., the region of attraction can be enlarged
as much as desired. Using a simple extension of
the above argument, it is expected that the ISS
property would be semi-global as well.

Remark 3. One can minimize an upper bound on
the estimate of the L2 gain of the closed-loop
system by solving a semidefinite program.

In the next section, we turn to unstable linear
systems and characterize a local version of the
above result. Since the mere existence of input
constraints results in local rather than global sta-
bility arguments, adding state constraints would
not change the nature of the result.



4. UNSTABLE LINEAR SYSTEMS WITH
STATE AND INPUT CONSTRAINTS

When the open-loop system is unstable, there is
no guarantee that the receding horizon optimiza-
tions stay feasible for all points in the control-
lability set XN in the presence of disturbances.
To address this problem, we resort to a recent
result of Mayne and Langson (2001), in which the
authors provide a compact set of initial conditions
X̄N ⊂ XN such that when a slightly modified
receding horizon controller of the form h(x, x̂) :=
κ̄N (x̂) + K(x − x̂) is employed, the open-loop
optimizations remain feasible. In this setting, x̂ is
the state of the nominal system, and x is the state
of the actual system with additive disturbance w
which is assumed to be in a compact set W. The
gain matrix K is any stabilizing feedback which
renders A + BK stable.

In other words, Mayne and Langson provide a
smaller set of initial conditions which is obtained
by calculating the controllability set X̄N for the
nominal system, by imposing tighter state and
control constraints, however, inside this set, the
receding horizon scheme remains feasible for any
value of the disturbance in the allowable set W.
The new controllability set is the set of all initial
conditions which can be steered to a terminal set
despite the presence of disturbances. Using the
exact same argument as in the previous section,
we can show that for all states in the modified con-
trollability set X̄N , and for all disturbances in the
disturbance set W, the closed loop system with
the modified receding horizon controller h(·, ·) in
the loop, is input to state stable.

5. CONCLUSIONS

We showed that the implicit receding horizon
feedback not only exponentially stabilizes con-
strained discrete-time linear systems (as was
known before), but also renders them Input-to-
state stable. While this result is obvious for linear
systems, it is not so for a receding horizon con-
troller in the loop.

In the light of new results providing explicit char-
acterizations of the solutions to the constrained
linear receding horizon control problem, we have
shown that the closed-loop system is indeed input
to state stable, without any explicit design for
robustness. The results were shown to be global
for stable systems. In the case of unstable sys-
tems, it is possible to find a compact set of ini-
tial conditions in which the receding horizon con-
troller ”works”, despite the presence of bounded
disturbances. The above result would hopefully
facilitate the development of switching based su-

pervisory control schemes that switch between
candidate receding horizon controllers.
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