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Abstract: In this paper, an approach is proposed to the fault detection in multirate
sampled-data (MSD) systems with multiple time-delays in both input and output
channels. The background of our study is the increasing demands for fault detection
in complex, distributed process control systems, where the plant, controllers,
sensors and actuators are networked by standardized bus systems. The core of the
approach proposed is a) to derive parity relations of the MSD system with time-
delays while taking the different sampling rates and time-delays into account; b)
to take the intersample behaviour of the continuous-time disturbances and faults
into consideration with the help of operators. Copyright (©2002 IFAC
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1. INTRODUCTION

In recent years, model based fault detection and
isolation (FDI) technology is receiving more and
more attention. Implementation of observer based
FDI schemes, parity space approach and para-
meter estimation based fault identification on a
computer system is the state of the art (Gertler,
1998; Chen and Patton, 1999; Frank et al., 2000).

Fig.1 sketches a typical application of an FDI
system in a process control system. The process
under consideration is a continuous-time process.
Both the controller and the FDI system are
discrete-time systems which are implemented on a
computer system. The process output signals are
discretized by A /D converters and then fed to the
controller as well as to the FDI system. The D/A
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converters convert the discrete-time control input
signals into continuous-time signals. Since both
continuous-time and discrete-time signals exist in
the system, the system design should be indeed
considered from the viewpoint of a sampled-data
(SD) system.

During the last decade, the topic on SD system
control has been intensively studied. The achieved
results show a significant improvement in control
performance when the so-called direct design of
digital controller for continuous-time process is
adopted (Chen and Francis, 1995; Rosenwasser
and Lampe, 2000). Consequently, on account of
the intimate relationship between the control and
FDI problems, research and practical realisation
of FDI in SD systems increasingly receive atten-
tion.

Recently, Zhang et al. (2001) have formulated the
FDI problem for SD systems and demonstrated
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Fig. 1. Schematic description of the application of
an FDI system in a process control system

that indirect design of fault detection systems
for the SD system, i.e. analog design and SD
implementation or discrete-time design based on
a discretization of the process model, may not
achieve the desired performance because of the
approximation in the design phase. Motivated by
this knowledge, a direct design approach is then
proposed, whose key is the introduction of an
operator in order to describe the sampling effect.

In industrial applications, modern complex con-
trol systems may be distributedly structured,
where the plant, controller, sensors and actua-
tors are networked by standardized bus systems
(Zhang and Branicky, 2001). Often, the A/D
and D/A converters in different input and out-
put channels have different working frequencies
(Patton et al., 1995). Furthermore, the data trans-
mission to and from the central control and super-
vision station may cause time-delays. All these
require an extension of the existing FDI theory
and technology in order to solve FDI problems in
such kinds of processes. With this background, an
approach is proposed in this paper to deal with the
fault detection problem for the so-called multirate
sampled-data (MSD) systems with multiple time-
delays in both input and output channels.

2. PROBLEM FORMULATION
2.1 System description

The system under consideration consists of three
parts:

(1) continuous linear time-invariant (LTT) process

#(t) = Ax(t) + Bu(t) + Eqd(t) + Ef f(t)
y(t) = Cx(t) (1)

where x € R" is the state vector, u € RP the
vector of control inputs, d € R¥¢ the vector of
unknown disturbances and f € R the vector of
faults to be detected, y € R the vector of process
outputs. Under the assumption that model (1)

describes the process dynamics including the dy-
namics of the anti-aliasing (low-pass) filter before
the sampler, without loss of generality, it is as-
sumed that the process model under consideration
is strictly proper.

(2) A/D converters and data transmission in out-
put channels

Py (k) = g (k' Ty — 7y0)
1=1,2,---,m; k'=0,1,2,---  (2)

where y; is the [-th process output, v; is the sam-
pled version of y;, T),; and 7, are the sampling
period and time-delay in the [-th process output
channel respectively, k', k2, -- k™ are used to
denote the different discrete time sets due to the
different sampling rates.

(3) D/A converters and data transmission in input
channels

KTy +7u; <t<® +1)Tu;+7u; (3)

where v; is the j-th discrete-time control input
sequence given out by the computer, u; is the j-th
continuous-time control input fed to the process,
T, and 7, ; are the period and time-delay in the
j-th control input channel respectively.

For the MSD system with time-delays, the fault
detection problem can be formulated as: De-
sign an optimal discrete-time FD system, which
makes use of the control input sequences v; (j =
1,2,--- p) and the sampled process output se-
quences ¥, (I = 1,2,--- ,m), so that it is robust
to disturbances d(t) while sensitive to faults f(¢).

2.2 A motivating example

In this subsection, it is shown through a simple
but illustrative example that, not to mention the
time-delays, the performance of the FD systems
may be strongly influenced if the different sam-
pling rates are not taken into consideration.

Given a process model in the form of (1) with

o<[3 5= [la-[3] o

#r= (i) e=[ot]

The sampling periods in the first output channel,
the second output channel and the input channel
are 0.5s,1s and 0.5s, respectively. All the simula-
tions are made under the same conditions: d(t) is
white noise with noise power being 1; f(t) is a step
function with the step time at the 60th second and
amplitude 10.

Since the sampled values in both input and output
channels are available at every 1s. It seems natural



to design the FD systems in the following two
ways:

Indirect approach I: First a continuous-time
FD system is designed based on the continuous-
time process model (4), which yields

C(t) = G¢(t) + Hu(t) + Ly(t) (5)
r(t) = —qcC(t) + quu(t) + ¢y(t) € R

with
0 -1 ~0.02
3] = [ooor
~0.2 1.0
L= {—0.19 —0.03} =0
gy = [~0.01 0.001], gc = [0 1]

Note that for the continuous-time process (4),
(5) is an ideal FD system because the transfer
function from d(s) to r(s) is zero, i.e. the resid-
ual generated by (5) is perfectly decoupled from
disturbances, see also Fig.2.

G

Doing a discretization of the resulting FD system
(5) with sampling period 1s yields
C(k+1) = Ga((k) + Hau(k) + Lay(k) (6)
(k) = —qcC(k) + quu(k) + qyy(k) € R
with

0.66 —0.53 —0.02
Ga= {0.53 0.13 } Ha = [0.006}

7, [~011 086
4= 1 -0.17 —0.31

Indirect approach II: First the process model
(4) is discretized with sampling period 1s, which
yields
x(k +1) = Agz(k) + Bgou(k)
+ Eagod(k) + Efaz f (k)

y(k) = Ca(k) (7)
with
0.37 1.16 1.00
Aaz = [ 0 0.14] » Baz = [0.43]

1.06 1.00
Ean = [0.43} Bpaz = [0.43}
Based on (7), a discrete-time FD system is de-
signed. Set s = 2 and apply the standard parity
space method. As a result, we get the optimal
parity vector

Wg = [0.0 —0.0 0.13 0.30 —0.36 0.88]

which allows us to construct residual generator as

y(k —2) u(k —2)
Tk = ws( y(k - 1) — Hy s u(k - 1) ) (8)
y(k) u(k)
with
0] 0] O O
g _ | CBa 0 0 0
U8 CAdzBdg CBdg O O
C A% Bgs CAgoByz CByy O

Note that
O O O O
| B 0 o of_,
| CApFEq2 CEqa o O]

CA%,Egaz CAgoEag> CEgas O

so for the purely discrete-time system (7), the
discrete-time FD system (8) achieves a perfect
decoupling from disturbances, see also Fig.3.

To check the performance of the discrete-time
FD systems designed above in the MSD system,
(6) and (8) are applied to the MSD system re-
spectively. Unfortunately, neither (6) nor (8) can
detect the fault, as shown in Fig. 4 and 5.

The above observation motivates us to look for a
new design approach.
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Fig. 2. Simulation result of applying (5) to (4)
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Fig. 3. Simulation result of applying (8) to (7)
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Fig. 4. Simulation result of applying (6) to the
MSD system
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Fig. 5. Simulation result of applying (8) to the
MSD system



3. A NEW DESIGN APPROACH

The MSD system with time-delays is a periodic
time-varying system. Its least period, denoted by
T, is the least common multiple of the periods of
all A/D and D/A converters in the system. For
convenience, define

a; =T/Tuj, B =T/Ty, 9)

It is assumed that the detection instants are kT
(k = 0,1,--+) and that the values of ¥, (I =
1,2,--- ,m) during the period from kT — sh to
kT will be used for fault detection.

Let h be the greatest common divisor of all the
periods Ty j, T,; and time-delays 7, ; and 7.
Define

Q; = Tu,j/hv él = Tyvl/h’ O =T/h (10)
05 =Tuj/h, e =Ty1/h (11)

where j =1,--- ,p; 1 =1,2,--- ,m. Let epax and
€min denote the maximal and minimal value in the

set {1,692+ ,em } respectively and define
kst = k9 — s — E€max; kena = k¥ — emin
63 = kend - kst (12)

At the time instants kh, the dynamics of the
continuous-time process (1) is exactly described
by
a(k+1) = Aqz(k) + Bau(k) + d(k) + f(k)
y(k) = Cx(k) (13)
where

w(k) = x(kh), u(k) = u(kh),y(k) = y(kh)

h
Ag =M By = / e Bdt
0
_ h
dlk) = / ABD B d(kh + £)dt
0

fk) = /O ' AN B f(kh + t)dt

Let k = kg, kst +1,--+ , keng- Then a group of
input-output relations are obtained as

Ys, (kend) - Ho,ésxqﬂst) + Hu,ésyés (kend)
+ Hés (dés (kend) + f&s (kend)) (14)

where
Yo, (kena) = [¢/ (kst) -+ o/ (Kena) |
us, (Kend) = [ul(kst) ul(kend) ]/
755(kend) = [ _/(kst) J/(kend) ]l
_53 (kend) = [ 7I(kst) 7l(kend)]/
Hos, = [C AYC" - (A5) '
0] o -+ 0
Hus = CBy 0]
: .0
CAS 'By--- CB; O

0] O --- 0

Hy = c 0
: . .0
CAYt ... C O

However, (14) can not be directly used for the
construction of residual generator, because

e due to the different sampling rates, not all
the components in the vector ys, (kend) are
available;

e due to the multiple time-delays in input
and output channels, the relative order of
the components in the vectors ys, (kena) and
us, (kena) will change.

To treat the different sampling rates and time-
delays in the output channels, the first step is to
find out which components in the vector ys_ (kena)
have available sampled values. To this end, define
some subscript sets as

S+ Emax — 1 — €
8,

€Zand epax — 1 <€ < S+ Emax — 1 }
i=0,1,---6, (15)

Q={l|1<1<m, €N,

Assume that the set €2; has a total of y; compo-
nents which are denoted as p;1, o, - -+, pyy,, in as-
cending order, i.e. 1 < pj; < pjp < -+ < pg, <M.
Let '

sz‘,(kSt + Z) = [ypz‘l (kSt + 7’) T ypi,pi, (kSt + ,L) ]/

where y; denotes the [-th process output. Further,
let

gés (kend) = [yglo (kst) e y&gs (kend) ]I

Us.(kena) consists of only those components in
Ys. (kena) with available sampled values. To pick
out the corresponding equations in (14), define the
matrices Cq, as

/ /

CQi:[cpil'.' ¢ ]l7i:0717"'6s (16)

Pip;
where ¢; is the [-th row of the matrix C.

The second step is to determine the relationship
between s, (kend) and the sampled process output
sequences ¥, (k) (I = 1,--- ,m; k' = 0,1,---).
From (2), there is

ket +1+ ¢
B,

yl(kst + Z) - 1/’1( )

thus

kst +i+€ﬂi1

¢Pi1( )

—Pi1

Yo, (kst +1) = : (17)
kst + ) + EpiM

)

piu'
i
pzﬂpi



Denote the vector on the right side of (17) as v,
and define

Yo, = [V, - Yo, T (18)
Apparently, there is
gés (kend) = W,@S (19)

To treat the different periods and time-delays in
the input channels, note that from (3) there is

where k! € ZN ((ket +i— 0j)/a; — 1, (kg +i —
0;)/a;]. Thus

u(kse +1) = [v1 (k) -+ vp(R]) ) (21)

Denote the vector on the right side of (21) as v;
and define

Uk, = [vg - v, ] (22)

)

Then the vector us, (keng) in (14) can be ex-
pressed by the control input sequences v;(k7) (j =
17 , D5 k'] :0717) as

us, (Kend) = Uk,s, (23)

Based on (16), (19) and (23), those rows of (14)
with available sampled values are picked out and

reorganized into a new equation group in the form
of

Vis, = Hys.x(kot) + Hus, 085,
+ gés (Jés (kend) + fés (kend)) (24)

where H, 5., H, s, and Hs, are composed of some
rows picked out from H, s, H, s, and Hs_, respec-
tively, as

Hys, = | Chy ACh, -+

)

/
(A%)Ch, |

ﬁu,és _ CQTBd 0]
: . .0
CQBSAgsile CQ%Bd 0
H‘Ss = C'Ql O
O

Ca, Ay~ -+ Cq,, O
Based on (24), a parity relation based residual

generator can be constructed as

T = Ws, (Vr,s, — Hu,6,Vk,,), ws, € Bs,  (25)

where ws, is the parity vector to be selected and
Ps_ is the parity space defined as

Pés = {wgs w55f{0,55 = 07w65 c RIX(“0+"'+N55)}

The dynamics of residual generator (25) is gov-
erned by

Ty =w, H (d55 (kend) + fs. (kend)) (26)

s bs

Bearing in mind that the main objective of de-
signing residual generators is to enhance the ro-
bustness of the FD system to disturbances d(t)
without loss of the sensitivity to faults f(t), two
operators I'g, and I'g, are introduced in order to
describe and analyse the influence of d(t) and f(t)
on the residual 7 quantitatively. Define

ds, (kend) = T d. s, (t)
Jo.(kena) = T frs.(t) (27)

I'g, and I'g, reflect the mapping relationship
from the continuous-time signals d(t) and f(t)
over a finite horizon [ksth, kengh) to the discrete-
time ones respectively (Zhang et al., 2001). The
dynamics (26) of residual generator can then be
re-written as

re =w, H, (Tg,drs,(t)+ g, frs,(t) (28)

Thus the optimal selection of design parameter
ws, can be formulated as an optimization problem

i 2 /A

. . ws, Hs L'p, Iy, Hs wy
min J = min = =

ws, €EPs ws, €Ps, w(ssH(SerfFEfH(lS w:s

(29)

Because there exist always matrices Eq and Ef so
that (Chen and Francis, 1995; Zhang et al., 2001)

h
EdEé:/ eATE B e™ dr
0

h
EfE} = / eATEfE}eTA/dT
0
FEdPEd = diag(EdE&, s ,EdE&)
FEfPEf :diag(EfE},--- ,EfElf) (30)
the optimization problem (29) is equivalent to

2 a1 /
ws, Haa,s, Hdd,zSSw&S

min J = min - - (31)
ws, €Ps, ws, €Ps, wéstf,ésHéf,5sw:$S
where
. Co. E, 0]
Higs, = Ql d .
: . .0
| Co, Ay 'Ey -+ Cq, Eq O
. Co. E 0]
Hyp 5, = Ql_ !
: . .0
_Cﬂés A2571Ef T 0955 Ef 0

The solution to (31) and also to (29) is
ws, = s, Noasis (32)

where Npqsis is the basis matrix of parity space
Ps., ps, is the eigenvector corresponding to the
minimal eigenvalue of the generalized eigenvalue-
eigenvector problem (Ding et al., 2000)

Ds, (vaasisI:Idd,(sS I:Iéd,és Nl;asisi
/\mianasistfﬁsHcllf,éle;asis) =0 (33)



Algorithm 1 Optimal design of discrete-time
FD system for the MSD system with time-delays
described by (1)-(3):

Compute the period T of the whole system.

Determine h, J, a;, @j,ﬁl,Bl,aj,sl.

Compute Aq, Bg, Eq and Ej.

Determine the subscript sets €2; and the ma-

trices Cq, for i =0,1,--- ,ds.

e Determine the matrices ﬁo,557 Npasis, ﬁu,ésv
Hdd,és and de,(ss.

e Solve (33)to get the optimal parity vector
ws, -

e Construct the residual generator (25) with

Yy, and vy, constructed by (17)-(18) and

(20)-(22) respectively.

4. SIMULATION EXAMPLE

Given the same process model (4) as in Section
2.2 and suppose the sampling periods and time-
delays are 1)1 = 0.5s, T}, 2 = 1s, T}, = 0.55 and
Ty1 = 0.5s, 7,2 = 25, 7, = 1s respectively. A
discrete-time residual generator is designed with
the approach proposed in this paper.

Apparently the period of the system is T' = 1s and
h:0.537,19:2,g:1,d:2,ﬁ1:1,51:2,
g2:2,52:1,a:2,51:1,52:4and

A, = [0.61 1.19} By - [0.39}

0 037 0.32
= _[o65 0] - _[060 0O
EBa= [0.37 0.28} By = {0.36 0.30]

Set s = 4. Then kg = 2k — 8, kepg = 2k — 1,
6s = 7. The subscript sets are Qg = Qg = {2},
D=0, Q3 =05 = Qs = Q7 = {1}, Qy = {1,2}
and correspondingly, Cq, = Cq, = ¢2, Cq, =0,
Cq, = Cq, = Cq, = Cq, = c1, Cq, = C. Solving
(33) yields the optimal parity vector

ws, = [0 —0.20 —0.90 1.49 —3.31 00 0]

Construct the residual generator according to (25)
as

T = Ws, (Yr,s, — Hus,Vn,s,) €ER (34)

with

wk,és = [¢2(k3 —2) Yok —1) P1(2k —4)
Uy (2 — 3) by(k) v (2K — 2)
Uy (2k = 1) ¥ (2k) ]
vk, = [V(2k —10) v(2k —9) --- v(2k —3)]

Apply the resulting residual generator (34) to the
MSD system with time-delays and do the simula-
tion under the same conditions as in Section 2.2.
Figure 6 shows that the fault can be successfully
detected and demonstrates the effectiveness of the
design approach given in Algorithm 1.

absolute value of residual
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Fig. 6. Simulation result of applying (34) to the
MSD system with time-delays

5. CONCLUSIONS

In this paper, an approach is proposed to the fault
detection for MSD systems with multiple time-
delays. The different sampling rates and multi-
ple time-delays are taken into account during the
derivation of parity relations. Moreover, the inter-
sample behaviour of continuous-time disturbances
and faults is taken into consideration with the help
of operators. In this way all available information
can be exploited to the largest extent and no
approximation is made during the design phase.
This ensures a better handling of effects due to
the sampling and times-delays and thus results in
an improvement in FD performance.
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