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Abstract: Active safety and collision avoidance (CA) is a growing field within the automotive
industry. The aim of CA systems is to prevent or mitigate collisions by active interventions
i.e. warning, braking and steering. For many reasons, such as driver acceptance of the system
and legal requirement that the system itself must not cause hazards, the decision making is a
crucial part of the system. This paper presents a method for risk estimation on which to base
the decision making. We will show how one can form criterions for decision making in terms
of probability of collision. This criterion handles the noisy sensor data and process noise
(driver behavior) in a natural way, using existing tracking theory. The method is illustrated
by simulation results as well as test result from a prototype vehicle. Simulations and tests are
examples of a system which performs autonomous braking actuation at imminent collision.
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Probability

1. INTRODUCTION

The passive safety of passenger cars has significantly
improved over the last decades. As existing safety
technologies grow mature many automotive manu-
facturers have begun looking at alternative ways to
improve the passenger safety. One alternative is to
introduce driver support systems that help the driver
avoiding collision by active intervention (i.e. warning,
braking, steering etc.). The developments of these sys-
tems are driven by the fact that driver errors cause
a majority of all car accidents (Treatet al. 1977). In
this paper we will discuss one type of driver support
system which will be called a collision mitigation by
braking (CMBB) system. The system uses sensors to
monitor the environment directly in front of the ve-
hicle. The aim of the system is to avoid or mitigate
collisions by letting the vehicle autonomously apply
the brakes as the risk for collision becomes to high.
Other actions that could be considered are warning
and steering manoeuvres. Examples of sensors that
can be used to perceive other objects are radar, laser
radar (lidar) and cameras. All of these sensors are al-
ready being installed in production vehicles to realize

automatic cruise control functions.

The two main desired properties on a collision avoid-
ance system are:

(1) Avoid all collisions
(2) Make no faulty interventions

A faulty intervention is defined as an intervention that
occurs when the driver would have avoided collision
without the help of the system. These two properties
are in contradiction and the decision making algorithm
has to be a good trade off between them. For CMBB
systems the tolerance for faulty intervention is very
low. The focus for the decision making algorithm pre-
sented in this paper will thus be on avoiding faulty
interventions.

The decision when to intervene, depends on several
factors. Some of the most important factors are sensor
uncertainty and driver behavior. Below we will present
a method for collision risk estimation, which will form
a base for the decision making.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



Fig. 1. Driving states of a vehicle approaching a stationary obstacle

2. DECISION MAKING

To simplify the analysis of decision making we divide
driving into five states:

(1) Normal driving
(2) Collision avoidable
(3) Collision unavoidable
(4) Collision
(5) Post collision state.

An example of these states are given in Figure 1. As
we have already stated the tolerance for faulty inter-
ventions is low in a CMBB system. Therefore brake
maneuvers are normally initiated close to the bor-
der between the collision avoidable and unavoidable
states. Considering measurement and modeling errors,
the intervention cannot be initiated before the collision
unavoidable state has been entered, if one wants to be
certain not to make a faulty intervention.

Many algorithms suggest to use metrics based on lon-
gitudinal motion such as time to collision, relative
speeds and distances and deceleration for decision
making ((Tamuraet al. 2001), (Seileret al. n.d.) and
(Doi et al.1994)). The underlying assumption in these
systems is that the observed vehicle is in the same
lane. These metrics although intuitive and easy to un-
derstand, might be difficult to use for complex driving
situations. To determine if a collision is unavoidable
or not, one generally has to consider motion both in
the longitudinal and the lateral direction.

We here propose to use the probability of collision
(Pt(collision)) as a metric for decision making. The
probability of collision can be calculated according to
equation (1).

Pt(collision) = Pt(PPOV − Phost ∈ D)

=
∫∫∫

δpx,∆py,∆ψ∈D
pt(∆px,∆py,∆ψ|Yt)dxdydψ

(1)

Here:
Phost = Position of the host vehicle
PPOV = Position of the principal other vehicle (POV)
D = The area which corresponds to a collision (i.e. the
area that corresponds to physical overlap of the two
vehicles.
∆px = relative position in the x coordinate
∆py = relative position in the y coordinate
∆ψ = relative heading angle

The probability density function (PDF) of the vehi-
cle’s relative position to each otherpt(∆px,∆py,∆ψ|Yt)
is obtained directly from the Bayesian solution to the
tracking problem, if we choose relative coordinates.
If we use ground fixed coordinates we first have to
calculate the density in order to calculate the collision
probability. Assuming that the statesxhost andxPOV
are independent the density of∆x = xhost−xPOV is
given by the convolution in Equation (2).

p∆x,t(∆x) =∫ ∞

−∞
pxP OV

(x)pxhost
(x− ∆X)dx (2)

In the case werexhost andxPOV are Gaussian and
independent

xPOV − xhost ∈ N (x̂host − x̂POV

,Cov(xhost) + Cov(xPOV ))
= N (∆x̂,Cov(∆x)). (3)

Such estimate typically comes from a Kalman filter,
which also provides the desired covariance matrices.
In the next section we will discuss in more detail
how to calculate an approximation of the PDF using
extended Kalman filtering.



3. TRACKING

The decision making algorithms rely on the fact that
information about surrounding objects states is avail-
able. It is the task of the tracking system to provide this
information. In automotive application radars, laser
radars, and vision systems are used for detecting and
tracking surrounding objects.

In general a CMBB systems will use more than one
tracking sensor. We are faced with a sensor fusion
problem, that involves synchronization in time and
space. In this paper we will use (extended) Kalman
filtering to solve this problem. We will work with
systems that can be described by Equation (4) and (5).

xt+1 =Atxt + vt,Cov(vt) = Qt (4)

yt =Ctxt + et,Cov(et) = Rt (5)

The state vectorxt consist of x and y coordinate
position (px andpy), x andy velocity (vx andvy) and
vehicle yaw rate (ω) as displayed in Equation (6).

x =




px

py

vx
vy
ω


 (6)

To model the dynamics of the host vehicles and other
vehicles we use the model in Equation (7).

At =




1 0
sin(ω)T

ω

1 − cos(ω)T
ω

0

0 1 −1 − cos(ω)T
ω

− sin(ω)T
ω

0

0 0 cos(ω)T sin(ω)T 0
0 0 − cos(ω)T sin(ω)T 0
0 0 0 0 1




(7)

This model is often called the nearly coordinated turn
model. It has been widely used in aircraft tracking,
typically in applications where one is interested in
tracking manoeuvring targets. The assumption of the
model is that the tracked objects moves in straight
lines or on circle segments. We will assume that the
noise (vt) that models the transitions between seg-
ments is Gaussian and has a known covarianceQt.
The main contributions of the process noise comes
from the driver.Qt is thus used to model what maneu-
vers the car/driver physically can perform.The mea-
surement provided by the sensors are range, range rate
and azimuth angle.

y =


RṘ
α


 =




√
∆p2

x + ∆p2
y

∆px∆vx + ∆py∆vy
(∆p2

x + ∆p2
y)2

arctan
(

∆py

∆px

)




(8)

Linearizing Equation (8) we get Equation (9).

CTt =
∂yt
∂xt

T

=



∆pxR−1 ∆vxR−1 − a∆pxR− 3
2 −∆py(∆pxb)−1

∆pyR−1 ∆pyR−1 − a∆pyR− 3
2 (∆pxb)−1

0 ∆pxR−1 0
0 ∆pyR−1 0
0 0 0




(9)

Where:
a = ∆py∆vy + ∆px∆vx
b = 1 + ∆p2y

∆p2x
With a system described by the above

equations we can use the time varying Kalman filter
given by Equations (10 -13).

x̂t|t = x̂t|t−1 + Pt|t−1C
T
t (CtPt|t−1C

T
t +Rt)−1

×(yt − Ctx̂t|t−1) (10)

Pt|t = Pt|t−1 + Pt|t−1C
T
t

×(CtPt|t−1C
T
t +Rt)−1CtPt|t−1 (11)

x̂t+1|t =Atx̂t|t (12)

Pt+1|t =AtPtA
T
t +Qt (13)

Under the assumption thatvt ∈ N (0, σvt
) andet ∈

N (0, σet
) then alsoxt+1 ∈ N (0,

√
Cov(xt+1)). The

Bayesian solution needed to calculate the probability
of collision is thus given by the EKF. The PDF is given
by Equation (14).

p(xt+1|yt) =
1√

(2π)pdet(Cov(xt+1))

× e
−(xt+1− ˆxt+1)T det(Cov(xt+1)−1(xt+1−x̂t+1)

2 (14)

The covariance of the state estimateCov(x) = E(x−
x̂)(x − x̂)T and the point estimatêxt is obtained
from the time update equation of the Kalman filtering
Equations 12 and 13.

4. SYSTEM OVERVIEW

The proposed algorithm will of course only give an ap-
proximation of the true probability of collision. This is
partly due to the fact that both the model of the vehicle
dynamics and the process noise model are approxima-
tions. To test what performance one can achieve using
commercial sensors both a simulation environment
and a prototype vehicle have been built. An overview
of the CMBB systems’ architecture is given in Figure
2. The prototype vehicle is equipped with one radar
and one lidar to detect and track objects. Both the radar
and the lidar has a maximum range larger than 100
m, the range resolution is less than 1 m, the angular
resolution is less than 1 degrees and the field of view is
12 degrees. The simulation environment also uses two
sensor models with similar characteristics as the two
physical sensors. For collision tests with the prototype



Fig. 2. Overview of the architecture of a CMBB Sys-
tem

Fig. 3. Inflatable car

vehicle an inflatable car (Figure??) was used. The
strategy is to perform full braking as soon as possible
when the collision unavoidable state has been entered.
To determine when this event occurs the maximum
probability of collision is calculated at each time in-
stant. Maximizing the probability over time is done
by calculatingPt+1(collision) ...Pt+N (collision) and
simply picking the maximum value. Performance of
the system has been tested both in simulated scenarios
as well as in physical tests. Some results from the
testing is presented in the following sections.

5. SIMULATION RESULTS

The evaluation of the system can be divided into two
parts. First we are interested to see if any faulty inter-
vention occurs. Secondly we are interested in system
performance in situations where an intervention is de-
sired. Several different scenarios have been simulated
to evaluate the system. In this section we will present a
selection of the simulation results. Scenarios 1-3 were
designed to provoke faulty interventions. These sce-
narios are used for system design, the threshold for in-
tervention (probability of collision) is set sufficiently
high not to have an intervention in these scenarios.
All the scenarios were simulated 10 times at each
speed (speeds [10 20 30 ... 150] km/h). In scenario
1-3 there are no faulty interventions (since this is how
the probability threshold is chosen).

Scenario 1: Head to Head, the driver of the CMBB
vehicle turns right at the last moment. Scenario 1 is
displayed in Figure 4.

Fig. 4. Scenario 1

Scenario 2: Straight roadway, the principal other vehi-
cle (POV) is traveling in the same lane as the CMBB
vehicle. Suddenly the POV brakes hard and then turns
hard. The POV just clears the path of the CMBB vehi-
cle. Scenario 2 is displayed in Figure 5.

Fig. 5. Scenario 2

Scenario 3: The CMBB vehicle changes from right to
left lane (both lanes in the same direction) at the same
time as it meets another vehicle in the opposite lane.
Scenario 3 is displayed in Figure 6.

Scenarios 4-6 presented below are used to see what
performance the system achieves in situation where
an intervention is appropriate. In all the scenarios we
assume that the driver continues the same maneuver
(steering wheel angle etc.) he was doing before the
system applies the brakes.

Scenario 4: Straight roadway, the POV is traveling
in the same lane as the CMBB vehicle. Suddenly the
POV brakes hard (deceleration 7 m/s2). The headway
is 15 m. The initial speed, prior to the POV brake
maneuver, is the same for both vehicles. Scenario 4
is displayed in Figure 7.

Result: In Figure 8 the relative speed at the collision
moment is plotted as a function of the initial speed.
One can see that for low speeds the relative velocity at
impact is reduced 10-20 km/h. For higher speeds the
system response time is too long to be able to reduce
the collision speed.

Scenario 5: This scenario is the same as scenario 4

Fig. 6. Scenario 3



Fig. 7. Scenario 4

Fig. 8. Simulation results for scenario 4, relative speed
at collision with and without the CMBB system

with the exception that there is a lateral offset of 0.5
m between the CMBB vehicle and the POV. Scenario
5 is displayed in Figure 9.

Fig. 9. Scenario 5

Result: Again the relative speed of the vehicles at
impact is plotted as a function of the initial speed
(in Figure 10). For comparison the results from the
previous scenario has been plotted in Figure 10. In the
figure one can see that there is no intervention for low
speeds. The reason for this is that before the decision
is made the target moves out of the sensors’ field of
view.

Scenario 6: An object on the side of the road sud-
denly jumps into the path 10 m in front of the CMBB
vehicle. Scenario 6 is displayed in Figure 11. Result:
The performance for scenario 6 is plotted as a phase
diagram in Figure 12. This shows impact speed and at
what distance the system intervenes.

6. TEST RESULTS

The test vehicle is a Volvo V70 equipped with a mil-
limeter wavelength radar and a laser radar. The sensor
update rate is 10 Hz for both sensors. The sensor fu-
sion, data association and decision making algorithms

Fig. 10. Simulation results for scenario 5, the no offset
result from the previous scenario is plotted for
comparison

Fig. 11. Scenario 6

Fig. 12. Simulation results for scenario 6, Range and
Range rate between the host vehicle and the POV

are executed on an on-board processing unit which
is also connected to the vehicles’ braking system. It
normally takes about 0.3 seconds for the brake system
to rise to full brake pressure (ABS-braking).

The purpose of having two sensors is to try to discrim-
inate targets that are not valid (i.e spurious reflection
and background clutter). For example a millimeter
wavelength radar can receive a strong echo from a tin
can. To check if the algorithm makes faulty decisions
the prototype system has been driven in real traffic
(urban and highway traffic) with braking disabled. We
found that some faulty interventions do occur. These
interventions mainly occur at low speeds when there
are a lot of potential targets/obstacles close to the
sensors (i.e. in front of the car). However we did not
find any case where it was obvious that the algorithm
made an erroneous decision based on a target that it



had been tracking for a longer period of time. All
the faulty interventions seem to come from erroneous
measurements, false targets or from bad initialization
of obstacles.

To evaluate collision mitigation performance, colli-
sion tests against a stationary obstacle have been per-
formed. As an obstacle, the inflatable car in Figure
?? is used. Performance for the head-on scenario dis-
played in Figure 1 is plotted in Figure 13. We here plot
range between host vehicle and obstacle vs. range rate,
the plotted result is an average from 5-20 collisions at
each speed. As can be seen in the figure, speed was
reduced 10-17 km/h for initial speeds ranging from
30-70 km/h.

Fig. 13. Results from head on collisions with inflatable
car

7. DISCUSSION

In this paper a method for decision making in collision
avoidance applications has been presented. The main
advantages of the method are: The use of existing
tracking theory which in a straight forward way incor-
porates measurement and process uncertainty in the
decision making process. Motion in two dimensions
is considered.

The prototype system presented in this paper signifi-
cantly reduces the impact speed in frontal collisions.
As can be seen in Figure 13 interventions typically
occur when the obstacle is closer than 20 m away from
the CMBB vehicle (more than 90 percent of all rear
end collisions occur at relative speeds below 100 km/h
(Zhu 2001)).

A sensor with a shorter detection range but a larger
field of view might be more appropriate for collision
mitigation purposes. Further work on the sensors and
the sensor fusion is needed to have a system with zero
faulty interventions. The sensors used in this system
only has rudimentary target classification capabilities.
It would be desirable to have a sensor which provides
better target classification.

Factors that limit the system performance are: Mea-
surement uncertainties, system response time (compu-
tational time and sensor measurement rate) and system
modeling errors. Another factor that limits the system
performance is the time to build up brake pressure and
maximum achieved pressure. The brake system on the
test vehicle here achieved decelerations between 5-7
m/s2. A brake system that quickly gives a deceleration
of 10 m/s2 potentially gives an additional speed reduc-
tion of 10 km/h to the test results plotted in figure 17.

Some specific problems with the system presented
here where that the laser radar and millimeter radar
could not be synchronized. This of course causes
some discrepancy between laser and radar measure-
ment. Both sensors loose the target at close range
(less than 10 m) because their narrow field of view.
This causes deteriorated performance at low speeds.
The laser radar seems to have problems detecting the
inflatable car which at some occasions caused missed
interventions, since both sensors are required to detect
the obstacle in order to have an intervention.

To design a good collision avoidance system we need
to solve two issues. One is the risk estimation dis-
cussed in this paper. The other issue, that has not been
addressed here, is that of object recognition. This is a
matter of the sensing capabilities of the sensors but
also a matter of how to do the sensor fusion. For
correct decision making accurate target classification
and feature extraction is imperative.
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