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Abstract: Early stages modelling of processes involves issues of classification of
variables into inputs, outputs and internal variables, referred to as Model
Orientation Problem (MOP) which may be addressed on state space implicit, or
matrix pencil descriptions. Defining orientation is equivalent to producing state
space models of the regular or singular type. Studying the conditions, under which
such models may be derived, as well as the structural properties of the resulting
oriented problems, is one of the issues considered here. Oriented models of the
S(A,B,C,D)  type have transfer functions which may not be well behaving as far as
properties of input, output regularity and nondegeneracy. Defining subsystems by
reduction of the number of inputs, outputs such that the resulting transfer function
is well behaved as far as preservation of degeneracy, is a problem considered in the
context of systems having physical input, output variables, which have to be
preserved. Copyright © 2001 IFAC
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1. INTRODUCTION

An integral part of overall modelling problem
for systems is the definition of process variables
and their subsequent classification into control
variables (inputs), command variables (outputs)
and other internal variables. Heuristics linked to
the specific domain of applications, or
methodologies such as graph analysis, etc. may
be used for handling issues of nonredundancy in
representations and classification of variables. A
natural system description that makes no
distinction as far as the role of process variables
and their dependence, or independence is for the

linear case the matrix pencil model (first order
differential descriptions), or the general
polynomial, or autoregressive model. Here, the
implicit, or matrix pencil models are examined,
which characterise all process variables and
consider their classification into inputs, outputs
and internal variables. This is referred to as
Model Orientation Problem (MOP) and its
solutions are systems of the standard state space
type. Investigating the conditions under which
MOP is solvable, as well as characterisation of
structural properties of solutions, when solutions
exist is one of the main topics considered here.
Solutions to MOP are linear systems of the
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S(A,B,C,D) type and are not always suitable for
control design since they may be characterised
by input, output structure redundancy and they
may be degenerate. Defining subsystems by
reducing the number of inputs, outputs such that
the reduced systems S(A,B´,C´,D´) are well
conditioned, as far as nondegeneracy, input,
output regularity etc. is a problem referred to as
Well Conditioning Problem (Karcanias and
Vafiadis, 2001a)  (WCP). This problem is
considered here in the case where the inputs,
outputs are physical variables and thus input,
output reduction implies selection of subsets of
such variables. The problems considered here
are integral parts of early design of processes
(Karcanias, 1994; Rijnsdorp, 1991) and are
considered in the context of linear systems. A
full treatment of the MOP and proof of the
results is in (Karcanias and Vafiadis, 2001a).

2. STATEMENT OF THE PROBLEM

Physical modelling may be used for large
families of systems. If all important variables are
included and there is no effort to guarantee their
minimality, and their classification into inputs,
internal variables is made (Willems , 1989), the
emerging descriptions are referred to as implicit
(Aplevich, 1991) and in the case of first order
differential descriptions they correspond to the
matrix pencil, or generalised autonomous
description (Karcanias and Hayton, 1982;
Kuijper and Schumacher, 1990):

            υτξξ ×ℜ∈= ,   F,G G F p S(F,G):      (1)

where p is the differentiation, or shift operator
and ξ  is the vector of all problem variables. The

study of such descriptions relies on the structure
of GsF − . For control, it is important to classify
the variables in ξ  into internal variables, or

states x , assignable, or control variables u , and

measurement, or dependent variables y . This is

expressed in terms of transformation ξξ
~

 Q= ,

where [ ]tttt yux
 

,,
~

=ξ  and 0Q  ,  ≠ℜ∈ ×υυQ . Q

will be called an orientation transformation
(OT). For first order linear descriptions the most
general form of oriented models is the general
singular  (GS) description:

            uD xC y,  uBxA xE p :Sgs +=+=       (2)

where pmnmpn ,D,C,BE,A ×××× ℜ∈ℜ∈ℜ∈ℜ∈ σσ ,
mpnm ++=+= υστ   , , and in general n≥σ .

In the case where n=σ , gsS  will be called

singular  and if n=σ  and 0≠E , then the

description will be called regular  and it is
equivalent to the standard state space
description:

             uD xC y,  uBxA x p S: +=+=    (3)

Defining an OT Q such that S(F,G) is reduced to

gsS  or S forms is called model orientation

problem (MOP) and it is considered here. Part
of this study is determining the conditions under
which S(F,G) may be reduced to the GS,
singular or regular descriptions. Defining
oriented models from matrix pencil models is a
form of oriented realisation . The main concern
is the determination of the algebraic structure of
the derived oriented model and to show how
such a structure evolves from that of the pencil.

Regular descriptions S(A,B,C,D) defined as
solutions of MOP may not have good properties
as far as control design; in fact, they may be
having degenerate transfer functions and be
characterised by input, output structure
redundancy. Defining subsystems of S by
reduction of the input, output structure such that
the reduced system S(A,B´,C´,D´) has desirable
properties is referred to as input-output
structure reduction problem (I-ORP) and
includes problems such as the squaring down
(Karcanias and Giannakopoulos, 1989). When
the resulting model has physical input, output
variables and it is desired to preserve them, then
the I-ORP takes the special form, where only a
α  set of existing inputs and a β  set of existing

outputs is used, which leads to an
( )βαβαβα ,, ,,, DCBASS =  subsystem with

corresponding transfer function ( )sH βα , .

Defining α , β  sets such that the resulting

βα ,S , ( )sH βα ,  is well structured as far as

certain properties is a problem referred to as
well conditioning by input-output reduction
(WCP) and it is also considered here. Note that
in a transfer function matrix setup, WCP is
equivalent to defining submatrices of ( )sH  by

eliminating certain columns and rows and which
have desirable properties.

3. THE MODEL ORIENTATION PROBLEM:
CHARACTERISATION OF SOLUTIONS

Considering the matrix pencil description S(F,G)
of eqn (1) with an associated matrix pencil

GsF −  of υτ × dimensions and for which we



assume the following Kronecker invariants
(Gantmacher, 1959):
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where ∞DD f  ,  denote the set of finite (fed),

infinite elementary divisors (ied), rI  is the set

of row minimal indices (rmi) and cI  the set of

column minimal indices (cmi). Note that δ  is
the number of linear ied, g is the number of zero
rmi and h the number of zero cmi. The above set
of invariants completely characterise the
Kronecker canonical form κκ GsF −  of GsF −
which is defined under strict equivalence, that is

there exists a pair ( ) ,:, ττ×ℜ∈RQR

0 , ,0 ≠ℜ∈≠ × QQR υυ  such that

(Gantmacher, 1959) ( )QGsFRGsF −=− κκ .

The problem considered here is the
characterisation of the types of oriented models
which may be derived from S(F,G), as well as
finding such solutions. It is first noted that:

Remark (1): If 0 , ≠ℜ∈ × RR ττ , then the space

of solutions (smooth and distributions) of S(F,G)
and S(RF,RG) are the same.

The above suggests that left transformations do
not affect the solution space and thus may be
used to simplify the original description S(F,G).

Proposition (1):  If GsF −  has g zero rmi, then

there exists 0 , ≠ℜ∈ × RR ττ  such that:
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GF
GFR

0

,
,                        (5)

and the solutions of S(F,G) and S(F´,G´) are
identical.

An S(F,G) system with zero rmi will be called
reducible; otherwise, will be called irreducible.
Proposition (1) implies that it can always be
assumed to be an irreducible form. The
existence of solutions to MOP is examined next.

Lemma (1) (Karcanias, 1990): Consider the
irreducible system S(F,G) with Kronecker

invariants as described in (Gantmacher, 1959).
There always exist a strict equivalence pair
(R,Q) such that:

                   ( ) ** GsFQGsFR −=−               (6a)

where:  =− ** GsF                                        (6b)
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where fff nnA × is  and it is characterised by

fD , IsH −∞  is ∞∞ × nn  and =−∞ IsH

}1 ,{ >−−= iq qIsHdiagblock
i

, cA  is cc nn ×

and corresponds to all 0>iε , cB  is vnc ×  and

full rank, rA  is rr nn ×  and corresponds to all

0>jn  and rC  is rnl ×  and has full rank.

Theorem (1):  Consider the irreducible system
υτξξ ×ℜ∈= GFGpFGFS ,   ,     :),(  where the

associated pencil GsF −  is assumed to have a
general structure. There always exists a

0 , ≠ℜ∈ × RR ττ , and a transformation

0Q  ,  ≠ℜ∈ ×υυQ , such that:
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which reduces S(F,G) to the equivalent oriented
description ),( GFS ′′ :
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where AEp ′−′  is a nonsquare of dimensions

( ) crf nnnnnnln +++=′′×+′ ∞ , , B′  is

( ) ( )hln +×+′ υ , C′  is n′×δ  and D′  is

( )h+× υδ .



The above result establishes the existence of a
general singular system as the solution to MOP.
Furthermore, the construction of such
transformation is intimately linked to derivation
of Kronecker canonical forms, which is behind

the construction of the form ** GsF −  of (6b).
Theorem (1) together with Lemma (1) establish
a relationship between the Kronecker structure
of GpF −  and the nature of solutions of MOP

and this is established by the following
corollaries. Any solution of MOP will be called
an oriented realisation of S(F,G).

Corollary (1): Any irreducible system S(F,G)
has an oriented realisation ( )DCBAES ′′′′′ ,,;,

which has the following properties:
(i) ( )DCBAES ′′′′′ ,,;,  is general singular, iff

the set of Kronecker invariants contains
nonzero rmi.

(ii) ( )DCBAES ′′′′′ ,,;,  is singular, iff the set of

Kronecker invariants has no rmi  and
contains  nonlinear ied.

(iii) ( )DCBAES ′′′′′ ,,;,  is regular, iff the set of

Kronecker invariants has no rmi and no
nonlinear ied.

The presence of nonzero rmi in the pencil
GpF −  implies that oriented realisations are of

the nonsquare, or general singular type.
Regarding the original description S(F,G) this
has some additional implications on redundancy
of the representation.  We first note that for
general singular representations the dynamic
part is described by the pencil [ ]BAEp ′−′−′ , ,

where AEp ′−′  is nonsquare. A normal

representation of this pencil (defined in a
nonunique manner by column permutations) is
the pencil [ ]BAEp ′′−′′−′′ , , where [ ]AEp ′′−′′  is

square. Clearly, normal representations may be
extended to the S(F´,G´) description of (7b),
and this leads to the definition of the normal
representation of the general singular description
represented as:
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Proposition (1):  If GpF −  has nonzero rmi,

then any oriented realisation S(F´,G´) of S(F,G)
has every normal representation S(F´´,G´´) with

AEp ′′−′′  singular.

The above property clearly suggests that there is
some redundancy in the components of x′

vector and this is described by the following:

Corollary (2): Let S(F´,G´) be a general
singular oriented realisation of S(F,B).  Then:
(i) There always exist rn independent linear

relations amongst the coordinates of the
original vector ξ .

(ii) The space of solutions of S(F´,G´) is given
by the set of rn linear relations and the

solutions of the reduced system.
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where x~  is vector of dimension cf nnn ++ ∞ ,

u′ , y′  as before and with the associated pencil

GFp
~~−  having the same Kronecker invariants

with GpF −  except the set of rmi.

The proof of the above result is constructive and
indicates how the set of rn  linear relations is

derived from the orientation transformation, as
well as a procedure to construct any reduced

systems ( )GFS
~

,~
 that expresses the dynamic

solutions.  The singular system ( )BAES ;,

defined by ]~,
~~[ BAEp −−  will be called a

reduced realisation  of S(F,G) and its properties
are described below.

Corollary (3): For any S(E,A,B) reduced
realisation of S(F,G) the following hold true:

(i) The pencil ]~,
~~[ BAEp −−  has as Kronecker

invariants the set of fed, ied and cmi of
S(F,G).

(ii) The number of inputs is given by the
number of cmi hv +  of S(F,G).
Furthermore, h expresses the order of
redundancy of the input structure i.e.
number of dependent inputs.

(iii) The system S(E,A;B) is controllable, if and
only if S(F,G) has no fed and ied.
Furthermore, the system is regular if and
only S(F,G) has no ied.

The analysis here provides a solution to MOT
for general autonomous description S(F,G), a
characterisation of the type of resulting oriented
realisations and a procedure to construct them
based on Kronecker form transformations.  So
far, no constraint has been imposed on the
orientation transformation.



4. WELL CONDITIONING BY INPUT,
OUTPUT REDUCTION

The input output structure reduction problem is
now considered, which may be thought as a
follow up to orientation, or which may be posed
independently, if early modelling produces a
transfer function H(s), with undesirable features
for control design.   Thus, consider the regular
state space system

 uD xC y,  uBxA x:  S(A,B,C,D) +=+=&  (10)

where rnnqrnnn , D, C, BA ×××× ℜ∈ℜ∈ℜ∈ℜ∈
with a corresponding transfer function

( ) ( ) ( )sDBAsICsH rq×− ℜ∈+−=  1  and let

 {H(s)}rank (s)ℜ=ρ . Clearly ( )rq,min≤ρ  and

whenever strict inequality holds, then the system
is called degenerate , otherwise, it will be called
nondegenerate .  The selection of the output
structure may be such that the system is
degenerate and this has implications as far as the
potential for control design.

Remark (2) (Rosenbrock, 1970): ρ  defines the

maximal number of output variables that may be
controlled independently (output function
controllability criterion).  Furthermore, ρ

defines the minimal number of independent
inputs required to control ρ  outputs.

It shall be assumed in the following that the
input, output structure of the model is regular:

       r
D

B
rank =
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
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, [ ]{ }  qC , Drank =     (11)

Such conditions can always be achieved by
simple, input, output redesign.  Failure of such
conditions to hold implies in certain cases
degeneracy (Karcanias and Vafiadis, 2001a) of
the resulting model.  Here the concern is on the
case of strong degeneracy, which is the result of
the deeper model structure.  The selection of a
reduced, input, output, structure model that is
nondegenerate is a straightforward problem
when general input, output transformations are
allowed.  Here the case where the input, output
sets are physical variables is considered. Given
the model H(s), or S(A,B,C,D), which is referred
here as a progenitor model, define: A maximal
cardinality subset of the input, output sets such
that the resulting transfer function is
nondegenerate and has the maximal possible
rank. The solution to the above problems is
referred to as well conditioning  of the

progenitor model. For the system matrix pencil
(Rosenbrock, 1970):

     (s) 
DC

BAsI
P(s) r) ( nq) ( n +×+ℜ∈








−−

−−
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and denote by:  {P (s)} , N Z rr =  ,Zr σ=dim

ϑ== lll Z {P (s)},  N Z dim .

Remark (3) (Karcanias and Vafiadis, 2001a): If

( ) ( )}{ sPrank sℜ=τ , ( ) ( )}{ sPrank sℜ=ρ , then

ρτ += n , ( ) ρσ −== rsHNr }{dim ,

( ) ρϑ −== qsHNl }{dim .

Thus degeneracy may be studied either on
S(A,B,C,D) or H(s).  Furthermore, if rq ≥
degeneracy can be studied by considering
properties of rZ , or ( )}{ sHN r  and if rq ≤  by

considering properties of lZ , or ( )}{ sHNl  only.

In the following it shall be assumed that rq ≥
and shall be concerned with the properties of

rZ , which is a rational vector space and it is

characterised by a set of Forney dynamical
indices (Forney, 1975), the column minimal
indices of P(s), ( ) { }0~...~~

21 >≥≥≥= σεεεPIc .

Note, that input regularity ( rDBrank tt =],[ )

implies that we have no zero cmi.

Using the (A,B,C,D) parameters, the following
sequence of matrices may be defined:
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the significance of which is demonstrated by the
following result:

Proposition (2) (Karcanias and Vafiadis,
2001a): The system S(A,B,C,D) with rq ≥  has

a vector in rZ  with degree k  if and only if

}0{}{ ≠kr MN .

Clearly, nondegeneracy may be achieved by
making sure that all kM  have no right nullity, or

equivalently full rank ( rq ≥  assumption). Such

infinite sets of tests may be reduced to a single
test as it is shown below.



Lemma (2) (Karcanias and MacBean, 1981): If
rq ≥ , then the maximal possible value of a cmi

of P(s) is:
(i) If 0≠D , ( ) δ=Drank , then

*
max 12~ vqn =−+−= δε

(ii) If D = 0, then *
max 1~ vqn =−−=ε

Theorem (2):  The system S(A,B,C,D) with
rq ≥  is nondegenerate, if and only if

}0{}{ * =vr MN , where *v  is defined as in

Lemma (2).

A searching procedure may be initiated based on

selecting subsets of the columns of [ ] ttt DB
  

,
and implementing this on *vM  matrix in the

appropriate block manner until the reduced *vM ′

has full rank. Simplified tests by using sufficient
conditions for nondegeneracy are:

Corollary (4): For the system S(A,B,C,D) with
rq ≥  the following conditions hold true:

(i) If D has full rank then the system is
nondegenerate.

(ii) If 0=D and CB has full rank, then the
system is nondegenerate.

The above corollary suggests that a simpler
procedure based on making the reduced D′ , or

BC ′  full rank by selecting the appropriate set of
inputs may be used; however, this may lead to
systems which have a nondegenerate ( )sH ′ , but

with rank less than ρ . Selection procedures are

described in (Karcanias and Vafiadis, 2000).

5. CONCLUSIONS

Two problems of the early modelling of
processes have been addressed which have a
strong systems and control content. The first was
the model orientation problem (MOT) which
have been considered using general
transformations and the second was the well
conditioning by input-output reduction (WCP).
A complete solution of MOT has been given and
the deployed approach has also the potential for
the development of algorithms for constructing
oriented models using Kronecker theory. The
characterisation of conditions for well
conditioning has been derived which may lead to
a searching procedure for selecting well
behaving solutions. Reducing the searching
effort by developing appropriate tests is an issue
under current investigation.
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