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Abstract: The aim of this study is to develop an automatic control loop monitoring
system. The first step includes the detection of changes and of oscill ations in the control
error and in the control signal. To determine the parameters of the statistical change
detection test (a CUSUM test), the average run length (ARL) function is exploited. To
detect oscill ations, a modified version of Hägglund’s approach is presented. Methods
are proposed in order to help the operator in the choice of the parameters for both
detection tests. The second step should consist in determining the origin of the
oscill ations or of the changes. Only the first step is presented in this work. Copyright ©
2002 IFAC
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1. INTRODUCTION

In industrial plants, many control loops have poor
performance which implies a decrease of the product
quality, unnecessary high energy consumption, waste
of raw material… These anomalies may have
different causes such as hardware fault (friction in
valve…), badly tuned controller, sensor fault…

The interest for automatic monitoring of control loop
performance is growing. Several approaches have
been proposed.

The minimum-variance based performance index
introduced by Harris has stimulated numerous
research works (Horch and Isaksson, 1999; Thornhill
and Hägglund, 1997). It is based on the comparison
between the actual output variance and the output
variance as obtained using a minimum variance
controller. The latter is deduced from a time-series
model of the measured output. The form of the test
depends on the zeros of the supervised process

(presence of non-minimum phase zeros or not) and
diff iculties exist for its systematic tuning. Therefore,
the emphasis here wil l be on simpler tests aimed at
detecting changes from a predefined nominal
performance characterised by the mean and the
variance of the control error or of the control signal
associated to a given set point.

Another important indication of deterioration of the
control performance is the presence of oscill ations in
the control error especiall y due to friction in valve,
oscill ating load disturbances, or badly tuned
controller. Several simple methods to detect these
oscill ations have been developed (Hägglund, 1995 ;
Thornhill and Hägglund, 1997 ; Forsman and Stattin,
1999; Miao and Seborg, 1998). The problems
encountered with the application of such methods to
industrial data will be explained and an alternative
method will be proposed.

Moreover, the determination of the source of
deterioration is of particular importance. In
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(Hägglund, 1999), a procedure for the automatic
detection of sluggish control loops is described. The
diagnosis of the causes of oscill ations has received a
large attention (Horch, 1999; Horch and Isaksson,
2000; Rengaswamy et al., 2001, Thornhill et al.,
2001; Thornhill and Hägglund, 1997).

The aim of this study is to develop an automated
monitoring system for the control loops usually
encountered in the process industries, namely
temperature, pressure and level control loops. The
tuning of this monitoring system should require very
limited process knowledge. It should be achievable
from data recorded under normal condition for each
loop. These data are the set point, the control error,
the control signal and the measured output variable.
This control loop monitoring wil l be separated into
two steps: the detection of performance degradation
and the diagnosis of the cause of malfunction.
The first stage involves detecting
- changes in mean or in variance of the control

error;
- changes in mean of the control signal (due to

process change or sensor bias, without any
change of the set point);

- oscill ations.
The first two points are tackled by using statistical
tests. The pre-processing of the data, the verification
of the assumptions and the tuning of the test
parameters are discussed. To detect oscill ations, a
modified version of Hägglund’s approach is
presented. For change detection as well as for
oscill ation detection, methods are proposed in order
to help the operator in the choice of the design
parameters.

In the second stage, we should concentrate on the
determination of the origin of the oscil lations, more
precisely, we should aim at distinguishing
oscill ations due to valve stiction from oscil lations
due to other causes such as oscill ating load
disturbances. Moreover, diagnosis of the reason for
changes in the mean or in the variance of the
processed signals should be attempted. These issues
will be studied in further work.

2. DETECTION OF DEGRADATION

2.1. Change detection

As seen in the introduction, performance degradation
can imply change in mean and/or in variance of the
control error and change in mean of the control signal
(in the absence of set point modification) in
comparison with the healthy state. In this section, the
detection procedure is described.

Undersampling
In order to detect abrupt changes as well as slow
changes in the mean of the signals, undersampling is
performed on the original data. Several sampling

periods that are multiple of the original one are
considered. The undersampled signals are obtained
by replacing the original data by their mean over the
considered sampling period.

For monitoring the variance of a signal over different
time horizons, a similar approach is used. New
undersampled signals are obtained by computing the
variance of the original data over windows
corresponding to the different sampling periods. In
this way a “variance signal” is obtained and changes
in the mean of this signal are associated to changes in
the variance of the original data.

Test
To detect changes in the mean of the undersampled
signals, a statistical test, the CUSUM (cumulative
sum) test is applied (Bassevill e and Nikiforov, 1993,
pp. 41-47). This test is briefly reviewed before
addressing specific implementation issues.

Consider a sequence of independent random
variables y(k), k=1, 2,.. with probabilit y density
function pµ(y) depending upon the mean µ. µ is equal
to µ0 before the unknown change time, while µ is
equal to µ1 (µ1 = µ0+ν or µ1 = µ0-ν) after change. The
problem is to decide between the following three
hypotheses:
H0: data have mean µ = µ0

H1: data have mean µ = µ0 before time k0 ≤  k and
mean µ = µ0 + ν after time k0

H2: data have mean µ = µ0 before time k0 ≤  k and
mean µ = µ0 - ν after time k0

where k denotes the present time instant.
The CUSUM test is based on the cumulative sum,
which is defined as
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If the observations are assumed to be normally
distributed and their variance σ is supposed to be
constant, the iterative two-sided CUSUM test
amounts to computing the two decision functions:
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Upper index + (-) refers to positi ve (negative)
changes in the mean. An alarm is generated when
one of these functions crosses a fixed threshold h.
The alarm time is thus given by:
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An estimate of the change time is computed as
follows
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where 1{ x}  is the indicator of the event x (1{ x}  = 1 if x
if true and 1{ x}  = 0 otherwise). Nk is the number of
observations after the re-start of the test, namely after



the last time instant for which the decision function
was null. ta

+ (ta
-) is equal to ta when the alarms is

issued by the test function (2) (test function (3)).

Discussion of the assumptions
This recursive test (Eq. (2) and (3)) is derived under
the assumptions that the processed signal has
Gaussian distribution and its samples are
independent.

The latter hypothesis is never satisfied on the
undersampled signals that were obtained from a set
of industrial data corresponding to temperature, level,
and pressure loops. In order to meet this requirement
one should design an appropriate whitening filter for
each signal. As our aim is to obtain a monitoring
system with as few tuning knobs as possible, the
design of this filter should be automated. Yet, from
analysis of the data, it appears that the spectrum of a
given signal may change under healthy working
conditions. Hence one should resort to an adaptive
whitening filter. This seriously increases design
complexity and makes automated design for an
arbitrary loop extremely diff icult. Besides, a
whitening filter can change significantly the fault
profile as indicated in Fig. 1 and in Fig. 2 where the
change in the mean of the original signal was
strongly attenuated by the whitening operation.
Moreover, upon occurrence of a change in the mean
in the original signal, a transient is observed in the
filtered signal which is thus not stationary. This
should ideally be accounted for in the CUSUM
change detection test, which makes its design more
complex and yields a test for which no theoretical
result exists on performance criteria such as mean
time between false alarms.

As far as the Gaussian hypothesis is concerned,
normality tests were applied to several data sets
corresponding to different types of control loops.
Table 1 summarises the results for tests performed on
several data sets of the control error undersampled
during healthy working conditions. It appears that the
undersampled signals do not necessarily have a
Gaussian distribution, and moreover, the distribution
of a given signal changes from Gaussian to non
Gaussian in healthy working conditions. Hence even
though a CUSUM test could be designed for an
arbitrary distribution, accounting for changes in
distribution would make the design overly
complicated.

In conclusion, the non-stationary character of the
industrial signals in healthy working modes makes
the pre-processing of the data by whitening filter
and/or the introduction of a non-Gaussian signal
distribution in the CUSUM test unrealistic. Besides,
whitening filters might significantly reduce fault to
noise ratio. For these reasons, it has been decided to
process directly the undersampled data with the
recursive equations (2) and (3) of the CUSUM test.
This approach is also motivated by the known

Fig. 1: Control signal.

Fig. 2: Output of whitening filter for undersampled
signal of Fig. 1.

Table 1: Results of normality tests on undersampled
signal

loop Number of
Gaussian data sets

Number of non-
Gaussian data
sets

temperature 4 10
level 3 7

robustness of the CUSUM test w.r.t. the whiteness
hypothesis (independent data samples) (Bassevill e et
al., 1981; Bassevill e, and Benveniste, (1983)), which
will also be verified here (see following section).

Tuning of test parameters
µ0 and σ are estimated from data sets corresponding
to the healthy working mode of the considered
closed-loop, or more precisely, from undersampled
signals obtained from these sets.

Two tuning parameters are left in the CUSUM test:
the change magnitude ν and the threshold h.

The first can be taken as the minimum value νmin of
the change one wishes to detect multiplied by 2. To
justify this choice, consider Fig. 3 which represents
p0(z), p1(z) and p2(z), the probabilit y density
functions of Gaussian distributions of a sample with
mean µ0, µ0 + νmin and µ0 + 2νmin respectively. If one
considers a CUSUM test to detect a change between
p0(z) and p1(z), it may issue an alarm as soon as the
mean of the signal z is larger than µ0 + νmin/2. Indeed,
the likelihood ratio p1(z)/p0(z) is larger than 1 for
values of z greater than µ0 + νmin/2 (take z0 for
instance). Hence, to ensure that the minimum
detected change is νmin one has to consider the ratio
p2(z)/p0(z) to design the CUSUM test.

The parameter h is more diff icult to determine. It
usually results from a compromise between the mean
delay for detection and the mean time between false
alarms. For a change in the mean µ, both quantities
can be determined from the so-called average run
length (ARL) function defined, as (Bassevill e and
Nikiforov, 1993, pp. 176-177):
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Fig. 3: Gaussian distribution with probabilit y density
function p0(z), p1(z) and p2(z), respectively with
mean µ0, µ0 + νmin or µ0 + 2νmin

This is the expected value of the alarm time instant.
When µ = µ0, the ARL is equal to the mean time
between false alarms, and when µ = µ1, the ARL
yields the mean delay for detection.
In the case of a change in the mean µ of a Gaussian
sequence, the ARL function for a two-sided CUSUM
test is computed as:
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with L+, the ARL function for the one-sided CUSUM
test corresponding to (µ0, µ0 + ν) and L-, the ARL
function for the one-sided CUSUM test
corresponding to (µ0, µ0 - ν).

As control loop monitoring is essentially aimed at
predictive maintenance in the process industries, it is
usually important to avoid false alarms. So, the
operator wil l be allowed to choose the minimum
acceptable value for the mean time between false
alarm, Tmin. The threshold wil l be calculated to meet
this requirement.

Exact computation of the ARL function is involved,
and hence one resorts to bounds on this function
(Bassevill e and Nikiforov, 1993, pp. 205 - 206). Here
the threshold of the test will be computed from the
expression of a lower bound for the mean time
between false alarms. Setting this lower bound to
Tmin should ensure that the actual mean time between
false alarms is larger than Tmin.
Several lower bounds for the ARL exist in the
literature, and, as our actual signals do not meet all
the hypotheses linked to the considered ARL
function, one has chosen to work with the most
conservative lower bound among the bounds
described in (Bassevill e and Nikiforov, 1993, pp. 205
- 206). The bound used has been selected after
analysis of comparisons given in (Bassevill e and
Nikiforov, 1993, pp. 220 - 221) and our own
simulation study. As the signals processed by the
CUSUM test are undersampled, some terms are
negligible in the formula for the bound. Using
equation (5) for the ARL function of the two-sided
CUSUM test, the mean time between false alarm wil l
be given by:
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with µs and σs, respectively, the mean and the
variance of the increments of the cumulative sum.
Their values are respectively -ν2/2σ2and ν2/σ2..

The threshold, h, is obtained from equation (6).

Although expressions (5) and (6) for the ARL and for
Tmin are theoreticall y only valid under the hypothesis
of independent signal samples with normal
distribution, they turn out to be quite useful for
tuning the test threshold even when such hypotheses
are not met. This is il lustrated by the results of tests
performed on several types of industrial signals given
in Table 2 and 3.

To build Table 2, signals from 5 loops were selected
during healthy condition. N is the length of the
chosen data set. For each loop, undersampling and
calculation of the “variance signals” were performed
with three windows of respectively 10, 100 and 1000
original sampling periods. Table 2 indicates the
parameters of the CUSUM test applied to the
undersampled signals (first 5 lines) and to the
“variance signals” (last 5 lines). Each line gives the
parameters for the three undersampled signals or
“variance signals” of a loop, zi, with i, the length of
the sampling window. The subscripts in Table 2 refer
to the length of the sampling windows. µi and σi

2 are
respectively the mean and the variance of the signals
zi corresponding to the first 20000 samples of the
original data set. ν is defined as:

( )1000,100,10,)min(,)max(max =−−= izz iiii µµν .

The lower bound for the mean time between false
alarms is chosen equal to 1 week or 40320 original
sampling periods. Finall y, h is the threshold obtained
from equation (6). The tests performed on the 10
signals with parameters defined in Table 2 give no
false alarm.

Table 3 shows the effectiveness of the detection test.
The data are obtained from control loops 1, 2 and 5.
The tuning parameters of the tests are those deduced
from healthy data as indicated in Table 2. The
estimated detection delay (deduced from equation
(4)), expressed here in the undersampling period, is
short. The advantage of the use of different window
lengths is verified: a short window is suitable to
detect large faults with short duration, and a larger
window should allow detection of faults with small
magnitude but long duration.

2.2. Oscillations

In the literature, several methods have been
developed in order to detect oscill ations. Most of
them are based on the study of the integrated absolute
error (IAE) between successive zero crossings of the
control error. Some methods (Forsman and Stattin,
1999, Thornhil l and Hägglund, 1997) may be fooled
by oscill ations of very small amplitude. In
(Hägglund, 1995), the amplitude of the oscill ations is
taken into account. Another method is based on the
analysis of the autocorrelation function (Miao and
Seborg, 1999). The choice of the test parameters of
the last two methods may be inappropriate. Indeed, it

µ0 µ0 + νmin µ0 + 2νmin

z0



Table 2 : parameters of the CUSUM test for change in mean and in variance

loop N ν µ10 σ2
10 h10 µ100 σ2

100 h100 µ1000 σ2
1000 h1000

1 161545 0.0242 -4e-6 7.05e-6 12.7 -7.9e-6 2.2e-7 13.9 -1.1e-5 1.8e-8 14
2 75000 0.019 1.43e-5 1.87e-6 13.5 1.6e-5 1.9e-7 13.5 1.1e-5 2.6e-9 15.5
3 107000 0.013 -4e6 1.12e-6 13.4 -1.9e-6 6.4e-8 13.9 -7.7e-7 1.99e-9 15.1
4 107890 24.7 0.23 9.58 12.45 0.24 2.45 11.51 0.23 0.26 11.46
5 100000 4.9 -6.8e-4 0.1108 13.7 -0.0016 0.0566 12.05 -0.0073 0.0045 12.3
1 161545 1.8e-4 4.15e-6 1.8e-11 15.8 1.1e-5 6.8e-11 12.1 3e-6 6.1e-11 9.9
2 75000 4.4e-5 2.8e-6 3e-12 14.8 4.3e-6 3.4e-12 12.3 4.5e-6 1.4e-12 10.9
3 107000 2e-5 1.9e-6 1.3e-12 14 2.8e-6 5.2e-13 12.6 2.8e-6 4.9e-14 12.7
4 107890 142.5 7.08 76.37 13.88 13.7 19.43 12.9 15.8 3.26 10.85
5 100000 2.36 0.0134 1.5e-4 18.8 0.0676 0.0056 12.9 0.1236 0.0035 11.1

Table 3: results of detection test

Undersampled
signal tested

Loop
(table 2)

Window length 
10

Window length 
100

Window length 
1000

mean 5 Change detected.
Detection delay :

1

Change detected.
Detection delay :

1

Change detected.
Detection delay :

1

mean 1 Change detected.
Detection delay :

3

Change detected.
Detection delay :

1

Change detected
Detection Delay :

1

variance 5 Change detected.
Detection delay :

1

Change detected.
Detection delay :

1

Change detected
Detection Delay :

1

variance 2 Change detected
Detection Delay :

1

Change detected
Detection Delay :

1

Change not
detected :

window too large

is based on the ultimate frequency or, if the latter is
not known, on the integral time of the controller,
assuming that it is of the same magnitude as the
period corresponding to the ultimate frequency. But
the latter assumption is not always satisfied.
Here new guidelines for parameter tuning of
Hägglund’s method are proposed.

The IAE is defined as

dt)t(eIAE
i

1i

t

t
∫
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with ti-1 and ti, two successive instances of zero
crossings. It is suggested to work with e(t) computed
as the difference between the control error and its
average value.
As proposed in (Hägglund, 1995), the method
requires two steps.

Detection of large IAE
If the IAE exceeds the limit IAEl im, it is considered to
be large. This limit is computed from a user-defined
sine wave characterising the smallest oscill ation to be
detected. Assume this sine wave has amplitude a and
period Tmin. Then IAEl im is computed as:

ππ /)/2sin( min

2/

0

minlim

min

aTdtTtaIAE
T
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The two parameters, a, the minimum amplitude and
Tmin, the minimum oscill ation period, must be chosen
by the operator.

Oscil lation detection
If the number of detected large IAE exceeds a certain
limit nl im during a supervision time Tsup, it can be
concluded that an oscill ation is present. nl im must be
chosen by the operator and Tsup is defined as
Tsup = nl imTmax/2 (9)
where Tmax, the maximum period of oscill ations,
must be chosen by the operator.

In practice, Hägglund proposes to make the
following test:

n)k(load)1k(x)k(x >+−γ= (10)

where load(k) is equal to 1 if a large IAE has been
detected at time k and to 0 otherwise, and

sup/1 TT−=γ , with T, the sampling period. The limit

n can be determined by simulation: it corresponds to
the value of x calculated for an oscill ation with a
period equal to Tmax and characterised by a number
nl im of IAE larger than IAEl im.

In order to detect appearance of oscill ations as well
as disappearance, it is proposed to apply the test on a
moving window of length Tsup.
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Fig. 6: Illustration of the oscill ations detection test
(a = 1, Tmin = 150 s, Tmax = 1500 s, nl im = 10)
I: detection of the disappearance of the
oscill ations; II: detection of the appearance of the
oscill ations.

Fig. 7: oscill ating signal

In Fig. 6, results obtained for an industrial data set
show the effectiveness of the method and the
advantage of the use of a moving window. Note that
the oscill ations of Fig. 7 can not be detected by
Hägglund’s nor by Miao’s method. Indeed, in the
latter methods, 5 oscill ations periods should appear
in a time window of 50 Ti or 250 Ti which is not
verified in this case, since Ti is equal to 60s. On the
contrary, the parameter tuning proposed here allows
one to detect the oscil lations (with a = 1; nl im = 10;
Tmin = 1500 s; Tmax = 15000 s).

In conclusion, this modified version of Hägglund’s
method has only 4 concrete parameters defined
without any assumptions and depending on what the
operator wishes to detect.

4. CONCLUSIONS

The problem of control loop monitoring has been
separated into two steps: detection of performance
degradation and diagnosis. Some guidelines have
been presented to help the operator in the choice of
the test parameters for the first step. The detection
step includes change detection and oscill ation
detection. To determine the parameters of the
statistical change detection test (namely the CUSUM
test), a bound for the mean delay between false
alarms obtained from the average run length (ARL)
function for independent signal samples with
Gaussian distribution is used. The eff iciency of the
parameter tuning is shown by application of the
method to industrial data. To detect oscil lations,
Hägglund’s method is modified by defining new
thresholds using more concrete parameters.
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