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Abstract:  The detection of process changes using a partial least squares (PLS) based
monitoring scheme can be achieved through the interrogation of two metrics, Hotelling's

2T and the Q-statistic.  The Q-statistic has been shown to be insensitive to small changes
in the process model parameters. In this paper, a modified statistic based on the local
approach is proposed to detect changes in the model parameters in a PLS based monitoring
scheme.  The performance of the Q-statistic is compared with the modified statistic
through their application to fault detection in a continuous stirred tank reactor. Copyright
2002 IFAC.
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1. INTRODUCTION

The problem of abnormal change detection in a
process has received considerable attention from the
research community (e.g. Willsky, 1976;  Basseville,
1988).  Two main approaches have been proposed to
address the problem (i) model based and (ii)
knowledge-based. In the model based approach, a
mathematical model of the process is established
from data collected when it was working under
normal operating conditions (NOC) and any
abnormal change in the process is detected by
comparing the behavior of the process with that
predicted by the model. In the knowledge-based
approach, artificial intelligence techniques (neural
networks, fuzzy logic or a combination of both) are
used to classify the data into different groups that
correspond to different operating conditions of the
process. In this paper, interest is in the model based
approach.

In a complex process, hundreds of process variables
can be measured that exhibit (cross) correlation.
Thus the number of independent (latent) events
driving the process is less than the number of
measured variables. The multivariate statistical
projection techniques of Principal Component
Analysis (PCA) and Partial Least Squares (PLS) are
empirical techniques that are suitable in such

situations. These methods have been applied widely
for the monitoring of processes and the detection of
abnormal changes in process operation (Kresta et al.
1991; Martin et al. 1996). In this paper attention
focuses on PLS for the monitoring of process
performance.

In a process, it is possible to distinguish between two
classes of change. The first is associated with
changes in process operation that result in greater
variation occurring in some process variables than
that captured under NOC, but the relationship
between the variables is unaffected. Statistically,
these changes result in a shift in the mean value of
one or more of the process variables, but the (cross)
correlation structure is unaffected and hence the
model is still valid for such changes. The metric used
to detect these changes is Hotelling�s 2T :

)()( 0
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where 0m  is  the mean and S  is the covariance
matrix calculated under NOC.

The second class of change is associated with a
change in the relationship or correlation structure
between the process variables. For these changes, the
model determined under NOC is no longer valid.
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These changes in PLS based monitoring scheme are
detected by monitoring the sum of squares of the
residuals (also known as the Q-statistic) either in the
process variable or the quality variable space if the
quality variables are available as frequently as the
process variables. In the process variable space the
Q-statistic is given by:
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and in the quality variable space:
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where x  and y  are the process and quality variable
vectors, �x , �y  are the PLS predictions of x and y
and xe , ye  are the residuals.

Basseville (1993) showed that the residuals, in
general, are not a sufficient statistic for detecting
changes in the parameters of a system.  That is, the
residuals do not capture the complete information as
far as changes in the parameters of a system are
concerned. Therefore a statistic based on the
residuals may not detect such changes or will be less
sensitive. The objective of this paper is to propose a
statistic based on the local approach (Benveniste et
al. 1987; Zhang et al. 1994) for the detection of
parameter changes in a PLS model.

2. PARTIAL LEAST SQUARES

Linear PLS is a multivariate regression method that
projects  process variables ( mR∈x ) and the quality
variables ( dR∈y ),onto a number of latent variables,
say jt  and ju  and develop a regression model
between them (Geladi and Kowalski, 1986):

jjjj etbu +=   where ( )k,1,j �= (4)

where k is the number of latent variables and is
determined by cross validation.  The latent variables

ju  and jt are chosen in such a way that the
correlation between them is maximised. The matrices
X and Y containing L samples are decomposed as
the sum of the outer products of latent variables, jt ,

and the loadings, jp , and the prediction j�u  of ju

and the loadings jq , respectively:
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where E and F are the residual matrices for the
matrix decomposition of X and Y.

Although partial least squares was originally used to
model steady state relationships, recently its use has
been extended to modelling dynamic relationships.
There are two approaches. One is to augment the
matrices X and Y with lagged values of the input and
output data and use these matrices in the PLS
algorithm (Baffi et al. 2000). An alternative approach
is to fit a dynamic relationship between the latent
variables ju  and jt  in equation (4) instead of a
steady state relationship (Lakshminarayanan, 1997).
For example, if an ARX )qp,(  model is chosen to fit
the relationship between the latent variables then:
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where .k . 1,2.=j . The PLS computation engine for
dynamic relationships remains the same as for steady
state PLS except that the expression for ju�  is now
computed from a dynamic relationship.

3. LOCAL APPROACH FOR CHANGE
DETECTION

The local approach for change detection is briefly
described to provide the building blocks for the
multivariate extension in section 4.  It is assumed
that a �true� monitored system is represented by:

),(fy ϕ= Θ  +η (8)

where Θ  is the system parameter vector, ϕ  is a
regression vector and η  is noise. The parameter
vector Θ  determines the behavior of the process.
Suppose that in the NOC mode, 0ΘΘ = .  When Θ
takes values other than 0Θ , abnormal behavior of
the system is indicated. The problem of change or
abnormality detection in the system can be
formulated in the framework of a hypothesis test.

Given a set of observations n21 .....yy,y  from a
system with parameter vector Θ , it is necessary to
decide between the hypotheses:

H0:  0ΘΘ =  for t n . . . 1,2,=
H1:  ∃  an instance r )nr1( ≤≤ such that
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In a complex system, the function, f, in Equation (8)
is either not known because of a lack of
understanding of the physics and chemistry of the
system, or is too complex to be of any use in



practical applications such as in monitoring and
control. Therefore, data driven system identification
techniques are commonly used to build simpler
representations (models) of the system. Let the
model structure selected for the system in Equation
(8) be:

e)g(y += ψθ, (10)

where θ  is the parameter vector of the model,ψ  is
the regression vector and e is the residual. In general,
f g≠  and Θ  and θ  belong to vector spaces of

different dimensions. When the system in Equation
(8) is operating in the NOC mode, 0θθ = . From
now on, a distinction is made between the system in
Equation (8) and its model in Equation (10).  The
former is termed the �true system� and the latter is
defined simply as the �model� and it is assumed that
the parameter vector 0θ  is known.

To detect changes in the behavior of the true system,
it is necessary to define a function )y,(K 0θ  that
satisfies the following properties:

( )[ ] 0y,KE 0 =θΘ   when  0ΘΘ = (11)

( )[ ] 0y,KE 0 ≠θΘ  when  0ΘΘ ≠ (12)

where ΘE  denotes the expectation when the
parameter of the true system is Θ . The function

)y,(K 0θ  is known as the monitoring statistic or
primary residual  (Bassseville, 1998). Benveniste et
al. (1987) and Zhang et al. (1994) developed local
asymptotic approach in which the monitoring
statistic can be associated with system identification
procedures. To understand the approach of Zhang et
al. (1994), it is necessary to understand how the
parameter vector 0θ of the model corresponding to
the NOC mode of the true system is identified. The
parameter 0θ  is determined by minimizing some
criterion function )V(θ :

arg0 =θ  
θ

min  )(V θ (13)

The most commonly used function is the expectation
of the square of the residual:
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Exchanging the expectation and differential

operators, and choosing 2e)y,(K
θ

θ
∂
∂=  gives:
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Thus y)],[K(E 00 θΘ =0 and
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This statistic:
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therefore satisfies the properties of the primary
residuals defined in Equations (11) and (12). Now let

)]y,(K[E),(h 00 θθΘ Θ= , then from Equation (16):

0),(h 00 =θΘ (19)

If Θ  is any other parameter of the system (that is the
process is operating under fault conditions) and θ  is
the corresponding identified model parameter then:

0),(h =θΘ       ∀  Θ  and θ . (20)

Now if the function )]y,(K[E),(h θθΘ Θ=  is
continuously differentiable, then 0),(h =θΘ  defines
a unique mapping between Θ  and θ .  That is:

)(Θbθ = . (21)

where the function b  is known as the bias function.
The change detection problem, Equation (9), for the
true system, can therefore be formulated as:
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For the design and analysis of a change detection
algorithm based on the statistic )y(K 0,θ , the
underlying distribution function is required.
Unfortunately, the distribution function of y),K( 0θ
is difficult to compute. To overcome this problem,
the hypotheses in Equation (22) are replaced by the
so called local hypotheses. In the local approach of
hypotheses testing it is assumed that the null and
alternative hypotheses come closer as the sample size
increases.  That is, under the local approach the null
and alternative hypotheses are:
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where v  is an unknown scalar and γ  is a vector
with  1|||| =γ . It should be noted that the local
hypotheses of change detection approach is
especially suitable for detecting small changes in the
process parameters. This approach has also been
used to design and analyze likelihood ratio based
testing procedures (Basseville, 1993). It was shown
in Zhang et al. (1994) that under the local approach
of hypotheses testing, the cumulative sum:
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converges weakly to Brownian motion as
∞→n under both the hypotheses 0H  and 1H  with

drift equal to zero under 0H  and a non-zero time
varying drift under 1H . This is equivalent to
assuming that )y,K( t0θ is an independent,
identically distributed (i.i.d.) Gaussian process with
zero mean under the null hypothesis, 0H , and a non-
zero mean under the hypotheses, 1H , with the same
covariance matrix under both the hypotheses. The
problem of change detection in the parameters of the
system therefore reduces to the detection of changes
in the mean of an i.i.d. Gaussian process, )y,K( t0θ .
This can be solved using the generalized likelihood
ratio (GLR) test (Basseville, 1993).

4. LOCAL APPROACH TO DETECT CHANGE IN
A PLS MODEL

The above approach is used to detect changes in the
parameters of the PLS model. Two cases are
considered (i) the quality variables are available as
frequently as the process variables and, (ii) the
sampling frequency of the quality variables is less
than for the process variables.

Case 1: Assume that an ARX (p, q) model is fitted
between each pair of variables ju and jt . From
Equation (7):

eθΦu xy += (25)

where xyΦ   is a  q)k(pk +× block diagonal matrix
with the jth diagonal element equal to

 1)],q-(n.t . 1),.-(nt(n), tp),(n.u . 1),.(n[u j jjjj ++++−−−−−−−−
T
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parameter vector, T
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T
k21 ]e . . . e,e[=e  is a vector of residuals. When the

(cross) correlation structure of the process changes, it
will be reflected in the parameter vector θ .  The
local approach can be used to detect this change. The
multivariate version of the statistic in equation (18),

given the measurements of the process and quality
variable vectors, )t(x  and )t(y  are given by:
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where θΦu xy=� , and 0θ  is the parameter vector
identified under NOC. By using differential vector
calculus, the primary residual at time t  is given by:

)t()t())t(),t(,( T
0 eΦyxθK xy= (26)

It is noted that ))t(),t(,( 0 yxθK  is a vector of
dimension kq+p ××××)( . The GLR test can now be
applied to ))t(),t(,( 0 yxθK  to detect the change.

Case 2: Now consider the situation where the quality
variables are not measured as frequently as the
process variables. This situation is more common in
practice. The prediction of the observed process
variable vector x is given by:

kk21 t....tt� pppx 21 ++=
(27)

where mRpi ∈∈∈∈ , R∈∈∈∈it ; 1,2....ki ==== . The prediction

error vector mRe ∈∈∈∈  is then given by:

x�xe −−−−==== (28)

Writing (27) in component form:

θΦx x=� (29)

where xΦΦΦΦ is a mkm ××××  block diagonal matrix, with
the diagonal element equal to ].t . ,. t,[t k21 .

T
km1mk212k111 ].p ..p . . ,.p .p,.p .p[=θ is an 1××××mk

vector of the components of loading vector and

ijp denotes the thj  component of the thi  loading
vector.  Again using the multivariate version of the
statistic in equation (18), the primary residual at time
t  given the measurement of process variable vector

)t(x  is given by:
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Here 0θ  denotes the vector of loading vector
components in NOC mode. Note that ))t(,( 0 xθK  is
a vector of dimension km ×××× . The statistic at time t
is then given by:

)t()t())t(,( T
0 eΦxθK x= (31)



The Generalized Likelihood Ratio (GLR) test
(Basseville, 1993) can now be applied to

))t(,( 0 xθK  to detect the change. A summary of the
GLR test is given below. At time n , for nr ≤ :
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are computed where R is the covariance matrix of
.) ,( 0θK  under the NOC mode of system. The

decision rule is then given by:

Decide in favor of 1H  if λ  Smax n
r

Wr
≥

∈

Decide in favor of 0H  if λ  Smax n
r

Wr
<

∈

where λ  is a suitable threshold and W  is a window
function. The window W is a set of points within
which the occurrence of a fault is sought up to the
current time point n . The covariance matrix R  is
generally unknown and can be estimated from N
observations of the statistics under NOC mode:
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If the covariance matrix of the monitoring statistic is
rank deficient, the covariance matrix can be
decomposed as:

R = TADA (35)

so that

T11 AADR −− = (36)

where D  is a diagonal matrix of non-zero
eigenvalues and A  is the matrix of corresponding
eigenvectors.  The threshold λ  is calculated by
observing that Sr

n  is distributed as a 2χ  with
degrees of freedom equal to the dimension of

). ,( 0θK as ∞→n , where n is time. The window,
W  is a moving window, where
W= )}n(n )nn{( 01 −− �  and )n(n 10 < . In practice
the size of the window is selected as a tradeoff
between the delay in detecting the change and the
false alarm rate, Zhang et al. (1994) by tuning the
values of 0n  and 1n .

5. CASE STUDY
FAULT DETECTION IN A CSTR

The proposed statistic for PLS model change
detection is now applied to detect faults in a
continuous stirred tank reactor (CSTR) in which an

irreversible heterogeneous catalytic exothermic
reaction BA →  takes place. A schematic of the
CSTR is shown in Fig. 1.

Fig. 1. Continuous Stirred Tank Reactor

The objective is to maintain the product
concentration at a desired level by controlling the
temperature of the reactor, the level in the reactor
and the reactor mixing conditions. Temperature in
the reactor is controlled by manipulating the flow
rate of the coolant to the heat exchanger via a
cascade control system. Manipulating the product
flow rate controls level in the reactor. The mixing
conditions are controlled by manipulating the recycle
flow rate.

The system has eight measured process variables
namely temperature of feed, concentration of feed,
flow rate of feed, flow rate of product, temperature
of cold water, pressure of cold water, coolant flow
rate and the control signal to valve 3. The three
response variables considered are temperature of the
reactor, level in the reactor and recycle flow rate. To
identify the model, a PRBS signal was superimposed
and 1000 data points generated with a sampling time
of one second. A dynamic PLS model was then built
by fitting an ARX (1,1) model to each pair of latent
variables.  The order of the model was selected
arbitrarily, although a more technical approach like
Akaike Information Criterion (AIC) can be used.
Three latent variables were selected using cross
validation, with a total of 93 % of the variance being
explained for Y block and 80 % for X block.  The
fault investigated was the fouling of the heat
exchanger and is simulated by changing (reducing)
the heat transfer coefficient of the heat exchanger
from its nominal value. This fault is selected because
the occurrence of this fault changes the correlation
structure and hence the PLS model.

Three simulations were run. In each of the
simulations the heat transfer coefficient was reduced
by a different percentage at time 450t = , namely (i)
5 % (ii) 10 % (iii) 20 % of its normal value. The
plots of the decision statistics determined from

))t(),t(,( 0 xyθK  and ))t(( 0 x,θK  based on the local
approach corresponding to the above changes in the
heat transfer coefficient with 99.9 % confidence
limits are shown in Figs. 2 and 3, respectively. The



parameters n 0  and n1  for the window, W , for the
above confidence limit are given as 50 and 550
respectively.
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Fig. 2. Plot of decision statistic based on
))t(),t(,( 0 yxθK  versus time.
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Fig. 3: Plot of decision statistics based on
))t(,( 0 xθK  versus time.
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Fig. 4. xQ  statistic versus time.

The plot of the xQ  statistic that is traditionally used
in MSPC is shown in Fig (4). It is clear from the Fig.
4 that the xQ  statistic is not able to detect the fault
corresponding to the above changes unlike the
statistic based on the local approach, Figs. 2 and 3.

Although not shown, Hotelling�s 2T  was unable to
detect any of these faults.

6.  DISCUSSION AND CONCLUSIONS

The Q-statistic has been shown to be less sensitive in
terms of the detection of changes in model
parameters.  In this paper the local approach of
Zhang et al. (1994) was extended to PLS based
performance monitoring for the detection of model
parameter changes. The methodology was applied to
the detection of the onset of faults in a CSTR and
was shown to be more sensitive to the subtle faults
which are not detected by the more traditional Q-
statistic. Only the step changes in the parameters of
the system has been considered.  The case for slow
drift in parameters of the system however, needs to
be investigated further.
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