
FUZZY OBJECTIVE FUNCTIONS IN MULTIVARIABLE
PREDICTIVE CONTROL

L.F. J.M. Sousa and J.M. da Costa

Technical University of Lisbon, Instituto Superior
Dept. of Mechanical Engineering/ GCAR - IDMEC

Av. Rovisco Pais, 1049-001 Lisbon, Portugal
Phone: +351-21-8417313, E-mail:

{mendonca,j.sousa,sadacosta}@dem.ist.utl.pt

Abstract: In order to incorporate fuzzy goals and constraints in model predictive control,
this control technique have recently been integrated with fuzzy decision making. The goals
and the constraints of the control problem are combined by using a decision function from
the theory of fuzzy sets. This technique have been studied for single-input single-output
processes. This paper extends this approach for multivariable processes. The simulation of
a gantry crane system is used as case study. The results show clearly the advantage of using
fuzzy predictive control in multivariable systems. Copyright IFAC
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1. INTRODUCTION

Fuzzy logic is widely used in control, by describing
the control law by if–then rules. However, human ex-
pertise can be used to define the design specifications.
These specifications are translated to performance cri-
teria using fuzzy sets, by defining the (fuzzy) goals
and the (fuzzy) constraints for the system under con-
trol.

This procedure is a particular approach of fuzzy
model-based control, following closely the classical
model predictive control (MPC) design approach, but
it makes use of the fuzzy sets theory in a higher level
than in standard fuzzy logic control, where the fuzzy
rules to control the system are given directly from
expert knowledge. In the approach presented in this
paper, the appropriate control actions are obtained by
means of a multistage fuzzy decision making algo-
rithm, as introduced by Bellman and Zadeh (1970).

Some examples of this high-level approaches can be
found: The first application in this field was in the
automatic train operation using a linguistic description
of the system (Yasunobu and Miyamoto 1985). A sur-

vey on model-based approach to fuzzy control and de-
cision making is presented by Kacprzyk (1997). More
recently, satisficing decisions have also been used in
a similar setting to design controllers (Goodrich et
al. 1998).

A detailed study of model predictive control using
fuzzy decision functions is presented by Sousa and
Kaymak (2001). This paper generalizes this last ap-
proach to multivariable systems. An illustrative exam-
ple, the predictive control of a container gantry crane,
is used to show the necessary steps to go from single
to multivariable fuzzy predictive control.

This paper begins by describing the application of
fuzzy criteria to predictive control in Section 2. The
possible types of fuzzy objective functions for pre-
dictive control are briefly presented in Section 3,
where the operators to aggregate fuzzy criteria are
also briefly addressed. The generalization of the fuzzy
goals and constraints to multivariable systems is illus-
trated by an example, consisting of the simulation of a
container gantry crane in Section 4. Finally, Section 5
concludes the paper.
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2. FUZZY PREDICTIVE CONTROL

Multistage decision making has been applied to con-
trol by several authors (Bellman and Zadeh 1970,
Kacprzyk 1997). When multistage decision making
is translated to the control environment, the set of
alternatives constitute the different control actions,
the system under control is a relationship between
the system inputs and outputs (or causes and effects),
and the mapping relating the inputs to the outputs of
the system under control is referred to as the model.
Moreover, fuzzy constraints are defined for several
variables presented in the system, which can be ‘hard’
or ‘soft’ constraints, and the decision criteria (fuzzy
goals and constraints) are the translation of the control
performance criteria to the decision making setting.

One of the main issues in model predictive control
is the type of model of the system under control
(Richalet 1993). Another important issue in fuzzy de-
cision making (FDM) applied to control is the ter-
mination time, which can be seen as a generalization
of the prediction horizon defined for model predictive
control (Soeterboek 1992). Multistage decision mak-
ing in a fuzzy environment considering any type of
model in closed-loop control have been introduced by
Sousa and Kaymak (2001). This paper assumes that
the termination time is the prediction horizon, which is
shifted when time evolves. This condition is necessary
to allow the application of multistage fuzzy decision
making to predictive control.

Let Gi, with i 1 q, be a fuzzy goal characterized
by its membership function Gi

, which is a mapping

from the space of the goal Gi to the interval 0 1 . Let
also Cl , l 1 r be a fuzzy constraint characterized
by its membership function Cl

, mapping the space of

the constraint Cl to the same interval 0 1 . The fuzzy
goals Gi and the fuzzy constraints Cl can be defined
for the domain of the control actions, system’s outputs,
state variables or for any other convenient domain.
Note that fuzzy constraints are usually defined in the
domain of the control actions, and fuzzy goals are usu-
ally defined in the domain of the state space variables.
A fuzzy set in the appropriate domain characterizes
both the fuzzy goals and the fuzzy constraints. The
goals and constraints are defined on relevant system
variables. For example, a common control goal Gi is
the minimization of the output error. The satisfaction
of this goal is represented by a membership function,
which is defined on the space (universe of discourse)
of the output error.

Each fuzzy goal Gi and each fuzzy constraint Cl con-
stitute a decision criterion j, j 1 T , where T
q r is the total number of goals and constraints. Each
criterion is defined in the domain j, j 1 T ,
which can be any of the various domains used in con-
trol. In order to solve the optimization problem in low
computational time, the optimization problem is de-
fined in a discrete control space with a finite number of

control alternatives. This limitation to digital control
is however not too severe, and this methodology can
still be applied to a large number of control problems.
Therefore, the confluence of goals and constraints is
defined in the following for discrete alternatives.

The fuzzy criteria must be aggregated in the control
environment. Assume that a policy is defined as a
sequence of control actions for the entire prediction
horizon in MPC, Hp:

u k u k Hp 1 (1)

where the control actions belong to a set of alternatives
. In the general case, all the criteria must be applied

at each time step i, with i 1 Hp. Thus a criterion

i j denotes that the criterion j is considered at time
step k i, with i 1 Hp and j 1 T . Further,
let

i j
denote the membership value that represents

the satisfaction of the decision criteria after applying
the control actions u k i . The total number of deci-
sion criteria for the decision problem is thus given by
T̃ T Hp. The confluence of goals and constraints
can be done by aggregating the membership values

i j
. The membership value for the control se-

quence is obtained using the aggregation operator
to combine the decision criteria, i.e.

11 1q

1 q 1 1T
(2)

...

Hp q 1 HpT

In this equation the aggregation operator combines
the goals and the constraints. Various types of aggre-
gation operations can be used as decision functions for
expressing different decision strategies using the well-
known properties of these operators (Kaymak 1998).
Parametric triangular norms can generalize a large
number of t-norms, and can control the degree of com-
pensation between the different goals and constraints.
Usually, parametric t-norms depend only on one pa-
rameter, which makes them much easier to tune when
compared to weighted t-norms. On the other hand,
they are not so general as the weighted approaches
(Kaymak and Sousa 2002). The translation of each
goal and each constraint for a given policy to a
membership value as in (3) avoids the specification of
the criteria in a large dimensional space. The combi-
nation of criteria in different domains is done for a set
of discrete alternatives, which corresponds to differ-
ent policies that can be applied to find the optimal
control policy. The decision criteria in (3) should be
satisfied as much as possible, which corresponds to
the maximal value of the overall decision. Thus, the
optimal sequence of control actions is found by the
maximization of :



arg max
u k u k Hp 1

(3)

Because the membership functions for the fuzzy cri-
teria can have an arbitrary shape, and because of the
nonlinearity of the decision function, the optimization
problem (3) is usually non-convex. To deal with the
increasing complexity of the optimization problem, a
proper optimization algorithm must be chosen. One
possibility is to use, for instance, the branch-and-
bound method, as presented in (Sousa 2000).

The definition of fuzzy goals and constraints must be
given by an operator or design engineer. Therefore,
when FDM in control is considered, human knowl-
edge is involved in specifying the control objectives
and constraints, rather than the control protocol itself
(Goodrich et al. 1999, Meiritz et al. 1995). Using
a process model, a fuzzy decision making algorithm
selects the control actions that best meet the specifi-
cations. Hence, a control strategy can be obtained that
is able to push the process closer to the constraints,
and that is able to force the process to a better perfor-
mance based on the goals and the constraints set by the
operator together with the known conditions provided
by the system’s designers. Note that this approach is
closely related to model predictive control. The formu-
lation of the control problem as a confluence of fuzzy
goals and fuzzy constraints leads to a generalization
of the objective function used in MPC. In this con-
trol environment, a policy with the possible control
actions u k u k Hp 1 can be defined as in
(1). The objective function using fuzzy criteria was
defined in (3). The closed-loop control configuration
is now discussed in more detail, in aspects concerning
the criteria and the aggregation operator(s) used to
combine them.

3. FUZZY CRITERIA IN PREDICTIVE
CONTROL

Fuzzy criteria play a main role in fuzzy decision
making. When FDM is applied to control, the fuzzy
goals and the fuzzy constraints must be a translation
of the (fuzzy) performance criteria defined for the
system. The definition of performance criteria in the
time domain has shown to be quite powerful in the
model predictive control framework (Camacho and
Bordons 1995). This section briefly presents the use
of fuzzy performance criteria in predictive control, as
introduced by Sousa and Kaymak (2001), and gener-
alizes the criteria for multivariable control.

When a control system is designed, performance crite-
ria must be specified. In the time domain, these criteria
are usually defined in terms of a desired steady-state
error between the reference and the output, rise time,
overshoot, settling time, etc., representing the goals
of the control system. In MPC, these goals must be
translated into an objective function. This function is

normally minimized (or maximized) over the predic-
tion horizon, given the desired control actions. The
translation of the (fuzzy) goals into an objective func-
tion can be done in two different ways.

The control goals are explicitly expressed in the
objective function, leading usually to long term
predictions of the behavior of the system, and
large prediction horizons Hp. This method re-
quires an accurate process model and large com-
putational effort.
Only short-term predictions (a few steps ahead)
are used in the objective function. This method
is usually applied in predictive control when the
available model of the system is not very ac-
curate. However, it still can lead to high per-
formance control, when the control goals can
be translated to short-term goals, which are
then represented in the objective function. This
method is especially suitable for nonlinear sys-
tems, where a compromise between computa-
tional time to derive the control actions and ac-
curacy of the predictions must be made.

3.1 Classical objective functions

Conventional MPC mainly utilizes sum-quadratic func-
tions as the objective function (Soeterboek 1992). In
predictive control of multivariable systems, the output
values ŷ k i , i 1 Hp depend on the states of
the process at the current time k and on the future
control signals u k j j 1 Hc, where Hc is
the control horizon. Let the overall control goals for
the time domain be stated as achieving a fast system
response while reducing the overshoot and the control
effort. For multivariable systems these goals can be
represented by the objective function

J eT Re uT Q u (4)

where the first term of (4) accounts for the minimiza-
tion of the outputs errors, the second term represents
the minimization of the control effort, and R and Q are
weighting matrices. Note that these parameters have
two functions: they normalize the different outputs
and inputs of the system, and they vary the importance
of the two different terms in the objective function (4)
over the time steps. If this is not the case, the op-
timization automatically weights different variables,
which is not desirable, and it leads to poor control
performance.

The objective function (4) can be interpreted as fol-
lows. The term containing the predicted errors indi-
cates that these should be minimized, while the term
containing the change in the control actions indicates
that the control effort should be reduced. The matrices
containing the weights, R and Q, can be changed so
that the objective function is modified in order to lead
to a desired system’s response.



(a) Membership functions for the error en

(b) Membership functions for the control ac-
tion um

Fig. 1. Membership functions for the criteria consid-
ered in fuzzy predictive control.

3.2 Fuzzy objective functions

When fuzzy multicriteria decision making is applied
to determine the objective function, additional flex-
ibility is introduced. Each criterion i j is described
by a fuzzy set, where i 1 Hp, stands for the
time step k i, and j 1 T are the different cri-
teria defined for the considered variables at the same
time step. Fuzzy criteria can be described in different
ways. The most straightforward and easy way is just
to adapt the classical criteria in MPC. This generaliza-
tion have been done for SISO systems in (Sousa and
Kaymak 2001). This paper extends the fuzzy criteria
for multivariable systems.

Let the system under control have control actions
u k and outputs y k . Figure 1 shows examples of
general membership functions that can be used for
one of the errors en k i rn k i yn k i ,
with i 1 Hp and n 1 ny, and ny is the
number of outputs, and for the change in the control
action um k i 1 , with m 1 nu, and nu is the
number of inputs.

In this example, the minimization of the output error
en en k i , with n 1 ny is represented by an

exponential membership function. This well-known
function has the nice property of being tangent to
the triangular membership function defined using the
parameters Ken

and Ken
, see Fig. 1. Another interesting

feature of this exponential membership function is
that it never reaches the value zero. Therefore, this
criterion is considered to be a fuzzy goal.

The control effort um um k i 1 , with m
1 nu is, in this case, represented by a triangular
membership function around zero, which is consid-
ered to be a fuzzy constraint. The crisp rate constraints
on um representing the maximum and the minimum
allowed in the system are given by Hum

and Hum
,

respectively. These constraints are related to physi-
cal limitations of the system. The membership degree
should be zero outside the interval Hum

Hum
. The pa-

rameters defining the range of the triangular member-
ship function are Kum

and Kum
. Note that membership

function um does not have to be symmetrical. Further,
um can also be defined as a trapezoidal membership

function.

In principle, different criteria can be defined at each
time instant k i i 1 Hp. This example has
T ny nu decision criteria and the total number
of criteria in a fuzzy MPC problem is thus given by
ny nu Hp. However, it is much simpler to consider

the same membership functions en and um for all
time steps k i. Some tuning guidelines for these pa-
rameters are going to be described in Section 4. Note
that in the FDM formulation it is no necessary to scale
the several parameters R and Q, as in (4), because the
use of membership functions introduce directly the
normalization required. After the membership func-
tions have been defined, they are combined by using
a decision function, such as a parametric aggregation
operator from the fuzzy sets theory, as the Yager t-
norm (Yager 1980).

4. APPLICATION EXAMPLE

The approach presented in this paper is applied to the
control of a simulated gantry crane, which is shown in
Fig. 2. A container gantry crane consists of a bridge
girder on portal legs from which a trolley system is
suspended. The trolley can travel along the bridge
girder that stretches over the container ship and part of
the quay for loading and unloading the ship. A hoist-
ing mechanism consisting of a spreader suspended
from the trolley by means of hoisting cables is used
for grabbing and hoisting the container. The control
goal is the position of the trolley at a desired horizon-
tal location x, with a rope length h, while the swing

of the load is damped so that the container can
be positioned accurately (see Fig. 2). The predictive
control structure applied includes measurement noise
and system disturbances, which have values similar to
the ones in the real system. With classical objective
functions the controller uses a simplification of the
cost function (4), considering only the error. This cost
function revealed to be sufficient to control the system.

The simulation model of the gantry crane is imple-
mented using the Lagrangian of the system, consider-



Fig. 2. Schematic picture of the container gantry crane

Table 1. Errors results for conventional
model predictive control and FDM.

h x
Gen mean 1 1 1

Yager t norm 1.21 1.28 0.91
Convent MPC 1.64 0.63 1.16

ing also the models of the electric motors, and the vis-
cous friction. The parameters of the model are taken
from a real crane at the port of Rotterdam. The input
of the crane motors is in the interval 200 200 V.
The trolley can reach a maximum velocity of 3.2 ms 1

for a maximum load of 53 ton. The crane construction
is assumed to be stiff, and the maximum acceleration
is 0.8 ms 2.

The vector of the errors is given eT e1 e2 e3 ,
where e1, e2 and e3 are the errors between the refer-
ences and the the three controlled variables, which are
respectively the horizontal position x, the length of the
rope h and the swing angle . In conventional MPC
the matrix R in (4) is the weight matrix given by:

R diag 1 1 1

This weights mimic the objective of following with
the same importance the rope and position references,
without neglecting the swing angle.

Fuzzy predictive control is applied using the general-
ized mean (Dyckhoff and Pedrycz 1984) and the Yager
t-norm (Yager 1980), as aggregation operators in (3).
A parameter must be tuned for both these operators.
The best values are found to be 3 5 for the generalized
mean and 2 5 for the Yager t-norm. The control and
prediction horizons are set respectively to Hc 3 and
Hp 5.

The simulations are made using MatLab on a 200
MHz Pentium PC running Windows 95. The B&B
method has been applied as optimization algorithm to
both the classical and the fuzzy predictive controllers.
This algorithm revealed to be the best for situations as
described in this paper (Sousa et al. 1997, Sousa 2000,
Sousa and Setnes 1999).

Table 1 shows sum squared errors obtained for various
simulations. The control variable is discretized in 3
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Fig. 3. Position with conventional model predic-
tive control (solid) and with generalized mean
(dashed-dotted).
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Fig. 4. Rope length with conventional model predic-
tive control (solid) and with generalized mean.
(dashed-dotted).
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Fig. 5. Swing with conventional model predictive con-
trol (solid) and with generalized mean. (dashed-
dotted).



discretizations. The error using the generalized mean
operator is taken as 1 (100%), i.e. it serves as the
normalization to be compared with the errors using
other methods.

Simulations using conventional model predictive con-
trol and generalized mean are depicted for the con-
tainer gantry crane position in Fig. 3, for the rope
length in Fig. 4 and for the swing angle in Fig. 5. Note
that it is not possible to distinguish clearly, just by
examining these figures, which controller is the best.
Therefore, it is important to present the errors as in
Table 1. However, it is clear that the fuzzy predictive
controller has a better behavior in terms of swing an-
gle, i.e. it presents smaller swing as normally desired.

All the controllers present good performance for both
the position and rope length, which are followed by
the controller with small position error. The conven-
tional controller is slightly better in terms of con-
trolling the position x. The error for the swing angle
is much larger with conventional model predictive
control when compared to other fuzzy methods. The
maximum absolute value for the swing angle is thus
6.4 using conventional model predictive control, 4.9
using the generalized mean and 4.3 using the Yager
t-norm. Therefore, we can conclude that in general
the fuzzy predictive controllers present better perfor-
mance, especially in terms of reducing the swing an-
gle, which is a crucial variable in the crane system.

5. CONCLUSIONS

This paper generalizes the application of fuzzy de-
cision making to predictive control for multivariable
systems. The problem of choosing fuzzy criteria in
a multivariable MPC framework is addressed. The
generalization of classical objective functions to fuzzy
objective functions in multivariable MPC is presented.
This generalization brings additional flexibility to the
definition of the objective functions, as shown by one
simulation example, where the improvements of the
controller response by using fuzzy objective func-
tions in MPC is clear. The proposed method presents
good performance, and obtained faster responses with
smaller overshoots than the classical MPC. Future re-
search must consider the generalization of the fuzzy
objective function in order to include weights and hi-
erarchical fuzzy criteria.
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