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Abstract: This paper deals with fault detection and more particularly with the
Fundamental Problem of Residual Generation (FPRG). In former works, conditions,
based on the properties of invariant distributions involving the disturbance vector
field, were given to solve this problem. The aim of the present paper is to provide,
when those conditions are not fulfilled, an alternative solution to the FPRG, based
on a perturbation estimator.
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1. INTRODUCTION

The problem of fault detection and isolation has
been widely investigated (Frank, 1990; Frank et
al., 1999; Staroswiecki et al., 1993).... The main
requirement of this problem is the residual gene-
ration which allows to detect and isolate the fault
by an appropriate evaluation. The detection of
faults is established by a logic decision based on
the residual which is an output signal generated
by one or many observers. The Fundamental Pro-
blem of Residual Generation (FPRG) was first
studied for linear systems with one fault signal
where the residual is required to recognize the
fault signal without confusing it with the dis-
turbance (Massoumnia et al., 1989). Most of the
time, in the nonlinear case, the design methods
and the diagnostic observers for detection are
based on the hypothesis that the system evolves
in the neighborhood of an operating point, and
the linearization method is used. The disadvan-
tage of this method is that the observation error
based on the linearized system can be misinter-
preted as faults by the detection algorithm and
hence lead to false alarm. One of the nonlinear

method is based on the disturbance decoupling
approach (de Persis and Isidori, 1999), (Seliger
and Frank, 1991). Nevertheless, some conditions
may appear too restrictive or not be satisfied in
the considered problem. Here we suggest a way
of investigation for solving the FPRG when those
conditions are not fulfilled. For a sake of simplic-
ity, the case of only one fault signal is taken into
account and an example is given throughout the
paper as a way of illustration. It is assumed hence-
forth that the reader is familiar with the basic
concepts and tools of the differential geometric ap-
proach (Isidori, 1995) and the sliding mode theory
(Utkin, 1992), (Perruquetti and Barbot, 2002).

2. PROBLEM STATEMENT

To approach the (FPRG), let us consider the
nonlinear system

ẋ = f(x, u) + l(x)m + p(x)ω (1)
y = h(x) (2)

where x(t) ∈ X := Rn, u(t) ∈ U := R, y(t) ∈ Y :=
Rp, m(.) : [0,+∞) → M := R is an unknown
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input (supposed to be piecewise constant), ω(t) is
an unknown disturbance. The system is supposed
to be perfectly known when m(.) = w(.) = 0.
f(x, u), h(x), l(x), p(x) are smooth vector fields.
Without loss of generality it is supposed that
x0 = 0 is an equilibrium point for the system (1-
2). The main problem of the FPRG is to design
a filter, or an observer, modelled by equations of
the form (Massoumnia et al., 1989):

ζ̇ = fr(ζ(t), y(t), u(t)) (3)
r(t) = hr(ζ(t), y(t), u(t)) (4)

where hr, fr are C∞ and r(t) represents the resi-
dual which is a valued signal containing informa-
tions on the time and the location of the occur-
rence of the fault. In the ideal case, r(t) should
be near zero when there is no fault and deviate
from zero when a fault occurs. This is, however,
impossible in practical case, because of noise and
modelling errors and a filter has been used to
obtain the residual r(t). Moreover, to detect the
fault, the following conditions are required:

• The observable states of the system are bounded,

• r(t) is not affected by ω(.) and u(.),

• r(t) is affected by m(.).

In this case, and if the filter (3-4) exists, a so-
lution to the FPRG exists. Hereafter is recalled
a method based on differential geometric consi-
derations (de Persis and Isidori, 1999). The first
stage of designing a residual generator consists in
decoupling the fault with respect to the perturba-
tion. To this end, one usually considers ∆p, the
smallest involutive distribution containing p and
invariant with respect to f (the construction of
such distributions can be found in the book of
Isidori (Isidori, 1995)). If dim ∆p(x0) = d < n,
it is known that there exists a diffeomorphism
z = Θ(x), with Θ(0) = 0, defined in U0, a neigh-
borhood of x0 such that, in the new coordinates,
the system (1-2) is represented by:

ż1 = ϕ1(z, y, u) + l1(z)m + p̃(z)ω (5)
ż2 = ϕ2(z2, y, u) + l2(z)m (6)

y1 = h̃1(z) (7)

ỹ2 = h̃2(z2) (8)

where z1 = (z11, ...., z1d)T , z2 = (z2,d+1, ...., z2n)T .
The subsystem (6-8) is assumed to be observable.
The fault must act on the z2 dynamics, that is to
say that the condition l(x) /∈ ∆p must be satisfied.
In order to design a residual which is decoupled
from the input ω, it is necessary to get an output
ỹ2, only function of the original outputs y1, y2,
and on which the perturbation does not act: that
is to say a function ψ(y1, y2) such that dψ ∈ ∆⊥

p

(∆⊥
p being the annihilator of ∆p) and LlL

i
gψ 6= 0

for at least one i ∈ {0, .., n}.

Example As a way of illustration, we will con-
sider throughout the paper the following nonlinear
system (without loss of generality, the system can
be supposed autonomous):





.
x1 = x1x3 + x2 + αω + x1m
.
x2 = x3 + m
.
x3 = x4 − x2x3
.
x4 = x2

3 + x2(x4 − x2x3) + δω + x3m

(9)

with the outputs
{

y1 = x1

y2 = x3
.

The classical method (de Persis and Isidori, 1999)
can not be applied here since

∆p = span
{
p, [f, p] , ad2

fp, ad3
fp

}

with p = (α, 0, 0, δ)T , [f, p] = − (αx3, 0, δ, δx2)
T ,

ad2
fp =

(
α(x2

3 + x2x3 − x4) + δx1, δ, 0, δx3

)T ,

ad3
fp =

(
αx3(3(x4 − x2x3)− x2

3) + δ(x2 − 1), 0, 0, 0
)T

and it is easily checked that dim ∆p = 4.

In a recent paper, Djemäı et al. (2000) considered
the particular case when dim ∆p = n. Still to
have a residual completely independent from the
perturbation, they proposed to use an output
injection ρ(y) in order to rewrite the system in
the form

ẋ = f̄(x) + ρ(y) + p(x)ω(t) + l(x)m (10)

and so that the dimension of ∆̄p, the smallest
involutive distribution containing p and invariant
with respect to f̄(x) = f(x)− ρ(y), is d̄ < n.

However this method can neither be applied here.
Indeed, let us rewrite the system (9) in the follow-
ing form





.
x1 = x2 + ρ1(y) + αω + x1m
.
x2 = ρ2(y) + m
.
x3 = x4 − x2x3 + ρ3(y)
.
x4 = x2(x4 − x2x3) + ρ4(y) + δω + x3m

where ρ(y) = (ρ1(y), ρ2(y), ρ3(y), ρ4(y))T =(
y1y2, y2, 0, y2

2

)T is an output injection. Then one
can compute the distribution ∆̄p:

∆̄p = span
{

p,
[
f̄ , p

]
, ad2

f̄p, ad3
f̄p

}

where f̄ = (x2, 0, x4 − x2x3, x2(x4 − x2x3))
T .

One gets

∆̄p = span








α
0
0
δ


 ,




0
0
δ
δx2








.

Since dim ∆̄p = 2, it is possible to define a change
of coordinates to decouple the fault signal from
the other inputs. However, one can not find a new
output ψ(y1, y2) such that dψ ∈ ∆̄⊥

p and thus one
can not generate a residual not affected by ω.



Motivated by this, the problem addressed in this
paper is to provide an other solution for the
FPRG. The idea is to get an estimation of the
disturbance input ω and then to use it to design
a filter to detect the fault.

3. DISTURBANCE AND DEFECT
DECOUPLING

To solve the FPRG, the first stage is now to decou-
ple the disturbance effects from the fault signal.
For this, let us consider ∆l the smallest involutive
distribution containing l(x) and invariant with
respect to f and p. Assume that:

(1) dim∆l = dl < n,
(2) there exists a function ỹ2 ∈ span {h1, . . . , hp}

such that dỹ2 ∈ ∆⊥
l ,

(3) p(x) /∈ ∆l .

Then one can find z = Θ∆l
(x), a diffeomorphism

based on the vector fields belonging to ∆l and
its annihilator, such that the system is locally
transformed into (Isidori, 1995):

ż1 = ϕ̃1(z1, z2, y1, y2, u) + l̃(z)m + p̃1(z)ω (11)

y1 = h̃1(z1, z2) (12)
ż2 = ϕ̃2(z2, y1, y2, u) + p̃2(z2)ω (13)

ỹ2 = h̃2(z2) (14)

where z1 = (z11, ...., z1dl
)T , z2 = (z2dl+1, ...., z2n)T .

The subsystem (13-14) is assumed to be locally
observable (Hermann and Krener, 1977).

Remark 1. The hypothesis (2) means that, in
order to design an observer for the perturbation,
the output of (13-14) must be decoupled from the
fault signal.

Remark 2. The assumption that ∆l is invariant
w.r.t. p ensures that p̃2 is only a function of z2.

Example Let us compute ∆l for the system (9)

∆l = span
{
l, [f, l] , [p, l] , ad2

f l, [f, [p, l]] , ad2
pl, [p, [f, l]]

}

= span








x1

1
0
x3


 ,




α
0
0
0








.

This distribution can be used to define the follow-
ing change of coordinates

z = Φ(x) =




x1

x2

x3

x4 − x2x3




so that the system is now given by



.
z1 = z1z3 + z2 + αω + z1m
.
z2 = z3 + m
.
z3 = z4
.
z4 = δω

with the following outputs{
y1 = z1

y2 = z3
.

The disturbance and the defect are perfectly de-
coupled since dy2 ∈ ∆⊥

l . Considering the subsys-
tem 




.
z3 = z4
.
z4 = δω
y2 = z3

(15)

it is now possible to design an estimator of the
perturbation. Once the disturbance is estimated,
it will be reinjected in the system (11-12) for
which a filter is designed to solve the FPRG.

4. AN ESTIMATION OF THE
PERTURBATION’S PROJECTION

Let us consider the subsystem (13-14), which
is not influenced by the fault signal, and write
henceforth

ϕ̃2(z2, y, u) = f̃2(z2, y) + g̃2(z2, y, u).

It is aimed here to design a sliding mode observer
for this system in order to estimate the perturba-
tion. Because of the nonlinearities and due to the
fact that some unmeasurable states appear in the
dynamics, an appropriate method for the design
of the observer relies on the so-called observable
triangular form (Barbot et al., 1996). For this,
it is assumed that the following conditions are
satisfied:

(1) f̃2, g̃2 and h̃2 are analytic vector functions.
(2) The system (13-14) is BIBS: Bounded Input

Bounded State, in finite time.
(3)

rank




dh̃2

dLf̃2
h̃2

...
dLn−dl−1

f̃2
h̃2




= n− dl

where L
f̃2

h̃2 = ∂h̃2
∂x f̃2 is the classical Lie

derivative.
(4) g̃2 verify for all u ∈ U ⊂ R, where U is the

set of admissible inputs,

dLg̃2L
i
f̃2

h̃2 ∈ Ωi ∀i ∈ {0, ..., n− dl − 1}
with Ωi = span{dh̃2, dLf̃2

h̃2, ...., dLi
f̃2

h̃2}.
(5) Denoting the distribution

Ω = span
{

dh̃2, dLϕ̃2 h̃2, . . . , dLn−dl−2
ϕ̃2

h̃2

}
,

it is assumed that p̃2(z2) ∈ Ω⊥.
(6) The term p̃2(z2)ω is bounded and p̃2(z2) 6= 0

for all z2.

The condition (3) is a ”degenerate” weak ob-
servability rank condition (Hermann and Krener,
1977). Conditions (5) and (6) allow to estimate
the perturbation.



Proposition 3. (Marino and Tomei, 1992) Under
the above conditions, the system (13-14) can be
transformed into a triangular observable form, by
using the diffeomorphism

ξ
4
= Θ(z2) =

[
h̃2 (z2) , . . . , Ln−dl−1

f̃2
h̃2 (z2)

]T

,

defined on U , a neighborhood of z2:
dξ

dt
= Ā2ξ + ḡ2(ξ, u) + P̄ω (16)

ỹ2 = [1, 0, ..., 0] ξ = ξ1 (17)

Ā2 =




0 1 0 0 0
0 0 1 0 0
...

...
...

. . .
...

0 0 0 0 1
0 0 0 0 0




, P̄ =




0
0
...
0

p̄2(z2)




ḡ2(ξ, u) =




ḡ21(ξ1, u)
ḡ22(ξ1, ξ2, u)

...
ḡ2,n−dl−1(ξ1, ..., ξn−dl−1, u)

f̄2(ξ) + ḡ2,n−dl
(ξ, u)




ξ =
[
ξ1 ξ2 . . . ξn−dl

]T
.

From the works of Boukhobza et al. (1996) and
Drakunov and Utkin (1995), the following type of
triangular sliding mode observer for the system
(16-17) is designed:




dξ̂1

dt
= ξ̂2 + ḡ21(ξ1, u) + λ1sign1(ξ1 − ξ̂1)

dξ̂2

dt
= ξ̂3 + ḡ22(ξ1, ξ̃2, u) + λ2sign2(ξ̃2 − ξ̂2)

...
dξ̂n−dl−1

dt
= ξ̂n−dl

+ ḡ2,n−dl−1(ξ1, ..., ξ̃n−dl−1, u)

+λn−dl−1signn−dl−1(ξ̃n−dl−1 − ξ̂n−dl−1)
dξ̂n−dl

dt
= f̄2(ξ1, ..., ξ̃nl−1) + ḡ2,n−dl

(ξ1, ..., ξ̃n−dl
, u)

+λn−dl
signn−dl

(ξ̃n−dl
− ξ̂n−dl

)
ŷ2 = ξ̂1

(18)
where ξ̃i = ξ̂i + λi−1signi−1(ξi−1 − ξ̂i−1) for
i = 2, ..., n − dl. The signi(ξ) function denotes
the usual sign function but with a low pass filter of
the ξ variable (Drakunov and Utkin, 1995) and an
anti-peaking structure (Khalil, 1996). This anti-
peaking structure comes from the idea that we do
not inject the observation error information before
reaching the sliding manifold linked with this
information. Moreover, thanks to the particular
sign function, the manifolds are reached one by
one. Thus a subdynamics of dimension one is
obtained and consequently no peaking phenomena
appear (Sussmann and Kokotovic, 1991). More
precisely signi(.) is equal to zero if there exists
j ∈ {1, ..., i} such that ξ̃j − ξ̂j 6= 0 (by definition
ξ̃1 = ξ1, sign1 = sign), else signi(.) is equal to

the usual sign(.) function. Thus, ξ̃i− ξ̂i converges
to zero if all the ξ̃j − ξ̂j with j < i have converged
to zero before.

Theorem 4. Considering the BIBS system (16-17)
and the observer (18), for any initial state ξ(0),
ξ̂(0) and any bounded input u and p̄2(z2)ω, there
exists a choice of λi allowing, in finite time, to
recover an estimation of the perturbation term.

Proof: The whole proof of the theorem can be
found in (Barbot et al., 1996). Let us show that
the use of this observer allows to get an estimation
of the disturbance’s projection p̄2(z2)ω. Denote
the error observation e = ξ − ξ̂. As this observer
is characterized by a step by step convergence, at
the dth

l step, the observation errors are given by:

ė1 = 0
ė2 = 0
...
ėdl−1 = 0
ėdl

= −λdl
sign(edl

) + p̄2(z2)ω

(19)

Under considerations about the sliding mode the-
ory (Utkin, 1992), edl

tends to zero in finite time
if

λdl
> ‖p̄2(z2)ω‖max .

Then the resulting equivalent dynamics on the
sliding surface edl

= 0 provides an estimation of
the perturbation

p̄2(z2)ω = λdl
signeq(edl

)

where, according to the sliding mode theory,
signeq(edl

) is the mean value of the function
sign(edl

). The value of signeq(edl
) is obtained

with a low pass filter. It can generate some ap-
proximations that are negligible if the bandwidth
of the filter is well chosen.

Remark 5. The condition on the perturbation
might appear quite restrictive but this approach
could be proved interesting as far as the problem
of isolation is concerned.

Example Let us take again the example (9) for
which the disturbance has been decoupled from
the fault. Note that the system (15) is already in
the observable triangular form. Let us define the
following observer





dξ̂3

dt
= ξ̂4 + λ1sign1(z3 − ξ̂3)

dξ̂4

dt
= λ2sign2(ξ̃4 − ξ̂4)

(20)

where ξ̃4 = ξ̂4 + λ1sign1(z3 − ξ̂3). The dynamics
of the observation error e = z − ξ̂ is given by

{
ė3 = e4 − λ1sign1(e3)
ė4 = δω − λ2sign2(ξ̃4 − ξ̂4)

(21)



Provided that λ1 > ‖e4‖max, one gets after a finite
time e4 = λ1sign(e3) and ξ̃4 = ξ̂4+e4 = z4 so that
the equivalent dynamics for the last equation of
(21) is

ė4 = δω − λ2sign2(e4)
and, choosing the observation gain such that λ2 >
‖δω‖max, a sliding mode occurs on e4 = 0. This
implies that

δω = λ2signeq(e4)

which gives us an estimation of the perturbation
ω.

5. FAULT DETECTION

Once an estimation of the perturbation has been
obtained, the system can be rewritten as

ż1 = ϕ̃1(z, y, u) + l̃(z)m +
p̃1(z)
p̄2(z2)

λdl
signeq(edl

)

ż2 = ϕ̃2(z2, y1, y2, u) +
p̃2(z2)
p̄2(z2)

λdl
signeq(edl

)

y1 = h̃1(z1, z2)

ỹ2 = h̃2(z2)

If the system is a linear one, it is then possible
to use the classical methods proposed in the
literature (see e.g. (Frank, 1990)). If there exist
some nonlinearities, the fault can be detected by
applying the algorithm proposed in (Djemai et
al., 2000). A sliding mode observer is designed to
cancel the unknown nonlinearities and then a high
gain observer allows to detect the fault.

Example In our example, the fault can be de-
tected thanks to the following step-by-step ob-
server. For this, let us define the change of co-
ordinates {

χ1 = z1

χ2 = z2 + z1m

so that the subsystem
{ .

z1 = z1z3 + z2 + αω + z1m
.
z2 = z3 + m

is transformed into{
χ̇1 = z1z3 + χ2 + αω
χ̇2 = z3 + µ(m)

where µ(m) = m(1 + z1z3 + χ2 + αω) (ṁ = 0
since m is assumed to be piecewise constant). The
chosen filter used to detect the fault signal m is
.

χ̂1 = z1z3 + χ̂2 +
α

δ
λ2signeq(e4) + η1sign(χ1 − χ̂1)

.

χ̂2 = z3 + η2(χ̃2 − χ̂2)
r(χ̂, y1) = (χ̃2 − χ̂2)

where χ̃2 = χ̂2+η1sign(χ1−χ̂1). The observation
error (ε = χ− χ̂) dynamics is

{
ε̇1 = ε2 − η1sign(ε1)
ε̇2 = µ(m)− η2(χ̃2 − χ̂2)

After a finite time, choosing η1 > ‖ε2‖max, a
sliding mode occurs on the manifold ε1 = 0 and
the equivalent dynamics is given by

ε2 = η1sign(ε1)

so that χ̃2 = χ2. Then ε̇2 = µ(m)− η2ε2. On the
manifold ε1 = 0, the chosen residual is ε2 which
is null if no fault occurs and different from zero
when a fault appears.

Remark 6. Note that ε2 = 0 if m = 0 or µ̄(m) =
(1+z1z3 +χ2 +αω) = 0. This singularity relies on
the structure of the system. Indeed, let us consider
the extended system





.
z1 = z1z3 + z2 + αω + z1m
.
z2 = z3 + m
ṁ = 0

(22)

with the output y = z1. Computing the observa-
bility codistribution dO :

dO =




1 0 0
z3 + m 1 z1

(z3 + m)2 (z3 + m) z1 (z3 + m) + µ̄(m)


 ,

the weak observability condition (restricted to
the third order) implies that the system is not
observable on the manifold µ̄(m) = 0 (rank dO =
0). However, this problem can easily be overcome
since it is possible to evaluate µ̄(m).

The Figure 1 shows a simulation where a failure
is assumed to occur at t = 0.5sec. Observe that
the fault can not be detected from the outputs
of the system but that the output of the residual
generator clearly indicates the failure.
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Fig. 1. The residual generation

6. CONCLUSION

In this paper, the problem of fault detection for
a nonlinear system has been studied. Particularly,
we proposed an alternative solution to the FPRG
when some known methods can not be applied.



To this end, conditions have been given for the
existence of a fault-decoupled and observable sub-
system which is affected by the disturbance. Then
the disturbance inputs have been estimated by
the used of a step-by-step sliding mode observer.
The perturbations being known, it has been shown
that a residual generator could be designed to
detect the fault signal. Some simulations has
been given to show the efficiency of the proposed
method. In further works, this approach will be
extended to the case of the detection and the
isolation of one or more faults.

7. REFERENCES

Barbot, J.P., T. Boukhobza and M. Djemai
(1996). Sliding mode observer for triangu-
lar input form. IEEE Conference on Decision
and Control.

Boukhobza, T., M. Djemai and J.P. Barbot
(1996). Nonlinear sliding observer for sys-
tems in output and output derivative injec-
tion form. IFAC World Congress.

de Persis, C. and A. Isidori (1999). On the pro-
blem of residual generation for fault detection
in nonlinear systems and some related facts.
European Control Conference.

Djemai, M., J.P. Barbot and O. Bethoux (2000).
On the problem of fault detection and resi-
dual generation. IEEE Conference on Deci-
sion and Control.

Drakunov, S. and V. Utkin (1995). Sliding mode
observer: a tutorial. IEEE Conference on De-
cision and Control.

Frank, P.M. (1990). Fault diagnosis in dynamic
system using analytical and knowledge based
redundancy- a survey and some new results.
Automatica 26, 459–474.

Frank, P.M., G. Schreier and E. Alcorta Garcia
(1999). Nonlinear observers for fault detec-
tion and isolation. Lecture Notes in Control
and Information Science 244, 400–422.

Hermann, R. and A. Krener (1977). Nonlinear
controllability and observability. IEEE Trans-
actions on Automatic Control 22, 728–740.

Isidori, A. (1995). Nonlinear Control Systems. 3rd
ed.. Springer-Verlag. London.

Khalil, H. (1996). Adaptive output feedback con-
trol of nonlinear systems represented by
input-output models. IEEE Transactions on
Automatic Control 41, 177–188.

Marino, R. and P. Tomei (1992). Global adaptive
observers for nonlinear systems via filtered
transformations. IEEE Transactions on Au-
tomatic Control 37, 1239–1245.

Massoumnia, M., G. Verghese and A. Willsky
(1989). Failure detection and identification.
IEEE Transactions on Automatic Control
34, 316–321.

Perruquetti, W. and J.P. Barbot (2002). Sliding
Mode Control in Engineering. Marcel Dekker.

Seliger, R. and P. Frank (1991). Fault diagnosis
by disturbance decoupled nonlinear observer.
IEEE Conference on Decision and Control
pp. 2248–2253.

Staroswiecki, M., J. Cassar and V. Cocquempot
(1993). A general approach for multicrite-
ria optimization of structured residuals. Int.
Conf. on Fault Diagnosis, Toulouse pp. 800–
807.

Sussmann, H.J. and P. Kokotovic (1991). The
peaking phenomenon and the global stabiliza-
tion of nonlinear systems. IEEE Transactions
on Automatic Control 36, 424–440.

Utkin, V. (1992). Sliding modes in optimization
and control. Springer-Verlag. New York.


