
LOTSTREAMING WITH EQUAL SUBLOTS IN NO-WAIT
FLOWSHOPS

Jiyin Liu
�

and Edouard Wagneur
���

�
Dept of Ind. Eng. & Eng. Managt., Hong Kong University of Science

and Technology, Clear Water Bay, Hong Kong, e-mail: jyliu@ust.hk���
Institut de Recherche en Communications et Cybernétique de Nantes,
UMR CNRS 6597, Ecole Centrale de Nantes, Université de Nantes,

Ecole des Mines de Nantes, BP 92101, 44 321 Nantes Cedex 03,
France, e-mail: wagneur@irccyn.ec-nantes.fr

Abstract:
We consider the problem of minimizing makespan in a no-wait flow-shop with an arbitrary
number of machines. We assume that all sublots have the same number of items. We consider
the cases with or without loading times. In both cases we show the existence of a critical
machine which never remains idle. Then we get a set of general conditions on the processing
times and loading times, which bind the number of sublots and the rank of the critical
machine. �������	��

����� © �	���	��������� .
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1. INTRODUCTION

We consider the problem of lot streaming of a single
product through � machines in no-wait flow-shops in
order to minimize the makespan. A lot consists of many
identical items of the product. Lot streaming is the pro-
cess of creating sublots to move the completed portion
of a production sublot to the next machines. This per-
mits the overlapping of different operations on the same
product and may therefore reduce the makespan. In a
flowshop, all products or sublots follow the same ma-
chine sequence, and each product (eg sublot) has exactly
one operation on each machine.
In the no-wait environment, a product (sublot) can-
not wait in-between the machines, either because there
are no buffers in-between the machines, or because

the process does not allow for such processing in-
terruptions. Lotsizing and scheduling problems in no-
wait flow-shops arise in chemical processing and petro-
chemical production environments. Another example of
the no-wait situation arises in hot metal rolling industries
where the metals have to be processed continuously at
high temperature. In such environments, where waiting
time induces increased processing time, Wagneur and
Sriskandarajah 1993a, 1993b, show that the minimum
makespan arises as a trade-off between no-wait (which
creates machine idle time) and no idle time for the ma-
chines (which creates parts waiting time).

Summaries of literature on lot streaming are given by
Baker (1990, 1995), Hall et al, 2000, Potts and Van

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



Wassenhove (1992), Trietsch and Baker (1989), and
Vickson (1995).

The solution where all sublots are equal is not optimal in
general ( cf Sriskandarajah and Wagneur, 1999, Wagneur
2001), but it is very easy to implement and to manage in
practice. It also easily allows for the determination of
the optimal number of sublots (cf Goyal 1976), which is
usually considered as given in the litterature. Moreover,
in many industrial, or chemical processes, the lines have
been designed for constant sublot sizes.

The environment considered here for the processing
of sublots is no-wait: the processing of a sublot on a
machine is started as soon as the processing of the sublot
on the preceding machine has been completed. This may
lead to machine idle times between successive sublots.
In recent years, a considerable amount of interest has
arisen in no-wait scheduling problems. This interest
appears to be motivated as much by applications as by
questions of research interest (refer to the survey papers
on no-wait scheduling by Hall and Sriskandarajah 1996,
Goyal and Sriskandarajah 1988).

The paper is organized as follows. In Section 2, we
consider the problem with no loading times prior to the
processing of a sublot on the machines.

In Section 3, we analyze the situation when some load-
ing times are required prior to processing each sublot
on the machines. This loading time only depends on the
machine considered. We show that there is also a critical
machine which is never idle. However, this machine may
change, as the number of sublots changes. We determine
a sequence of intervals for � which relate the index �
of the critical machine to some integer interval in which
machine � is critical. Then, given that this machine is
critical, we find the optimal number � � of sublots.

A short discussion then concludes the paper.

1.1 Notations

��� : the total number of items in the sublot � ; ��� is a
rational number.�	� : the unit processing time on machine 
 .� : the number of sublots for the product considered.
�� 
�

����� ��� : the total number of items demanded for

the product.
������� : makespan for the single product problem.
���� : machine � idle time prior to the processing of

sublot ����� � ���� ! � ��"� .#�� = loading time for machine 
 � 
 �%$ �� ! � &��� .

1.2 Assumptions

1. All



units of the product are available at time zero.

2. The product can be treated as infinitely divisible.

3. The processing of sublots is no-wait.

4. Consistent sublots are used to ensure no-wait process-
ing of sublots

(sublot sizes remain the same on all machines).

5. The processing of a sublot is proportional to its size,
i.e, the processing time of sublot � on machine 
 is �'� ��� .

6. All sublots have the same size.

2. THE PROBLEM WITHOUT LOADING TIMES

It is not difficult to see, from Figure 1 below (cf also
Wagneur, 2001), that the no-wait constraint induces ma-
chine idle times. Thus, the makespan ������� of a job of
size



can be expressed as (1) for a given number � of

sublots,

������� � � � 
)( 
*
����+ �,�

( � 

�*
� ��+

�	� (1)

where � � is the idle time on machine 1 before the
processing of sublot � .
The machine one idle times are derived as follows. Let
� � stand for the release time of sublot � , we have: � �.-
� ��/0� ( � ������/0�
� � ( � �1����- � ��/0� ( � ������/0� ( � +�����/0� � ! � � ! 2 � � 
� � ( ��� � /0��� ��� �3� - � ��/0� ( � ������/0� ( ����/0� ��� ��+ �	� � ! � � ! 2 � � 
Hence
� ��- � �4/0� ( � �����4/0� (

576�8+:9 � 9"�<; �=�'����/��
��� ��+ �	��> ���

� /���� ��� �	�@?
Since this includes all the constraints on � � , and we want
to minimize makespan, we have: � � � � �4/0� ( � �����4/0� (
5A6�8+:9 � 9"� ; �=�'� ��/��

��� ��+ � � > � �
� /0��� ��� � � ? , or

since � � >CB � �4/0� ( � �����4/0�1D � �,� :
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Fig. 1. A schedule for the sequence of sublots
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Now, since ��� � � ���

 � � � $ �� ! � &��� , we have:

�,� � � 576�8+:9 � 9 
 ; �=�
� � > � � ?� � 5A648��9 � 9 
 ;

� � > � � ? � � � �=���  � ! ���� .

The problem in this case is very simple. We can state the
following result.

Proposition 1

If the sublots are required to be equal, then in the optimal
solution the slowest machine will never remain idle.

Proof

We have: � � ��� �� � 
)( B � > $ D,� 576�8 ��9 � 9"� ; � � > � � ? ( � � �� ��+ � �� � � � � ( B � > $ D,� 5A6�8 ��9 � 9"� � � > B � > $ D � � � (� � �� ��+ � �
Let � � 6	��
 5A648��9 � 9 
 ;

� � ? , then

������� � � � � ( B � > $ D,� �
� ( � � �� ��+ �	� �
� � � /��� ��� �	� ( 
 �
� ( � � �� � ��� � �	�
From the above formula, it is clear that the slowest
machine is never idle.

The above formula also shows that the makespan de-
creases with the sublot size. Therefore we have the fol-
lowing result, where � � 6���
C576�8��9 � 9 
 ;

� � ? .

Proposition 2

When the sublots are equal and there are no loading
times, the lower bound of the makespan for producing


units is given by:

� ����� � 
 ��� �

and the upper bound of the quantity that can be produced
for a given due date � is


 � ���� .

3. THE MINIMUM MAKESPAN WITH LOADING
TIMES

Now we assume that, while remaining in the no-wait
environment (eg there are no buffers) a loading time #2�
is required for loading sublot � onto machine 
 . Thus
the processing of a sublot on this machine cannot start
before the processing of the sublot on machine 
�> $
finishes, and the sublot has been loaded onto machine 
 .
Then, in this setting, equations (1) and (2) become
������� �� # � ( � � 
 ( � 
����+ �,� ( � �� ��+ B # � ( � 
 �	� D
�,� � 576�8+:9 � 9 �

�
�=�@����/0� ��� ��+ �	��> ���

� /���� ��� �	�
( # � > # � �� � ���!   �1�

Let ��� ��� �3� � � , for convenience. As the sublots are

equal, � � � �


� � �,� � $ � ���!   �&�

� � � � � 5A648��9 � 9"� ; �
B � � > � � D ( # � > # � ? �� � ���!   �1�

� ����� � � # � ( � � 
)( B � > $ D � ( ��� ��+ B # �
( � � � D .

We can state:

Proposition 3

When there are loading times, for any given number
of sublots � , there is a critical machine that is never
idle after starting. This critical machine is the one that
maximizes � B � � > � � D ( # � > # � .
Proof

Let � � 6���
 5A648��9 � 9"�<; �
B � � > � �1D ( # � > # � ? . Then

� � � B � � > � � D ( # � > # �



� ����� � � # � ( � � 
 ( B � > $ D�� � B � � > � � D ( # � > # ���( ��� ��+ B #��
( � �3� D

� � /0��� ��� B #��
( � �	� D ( � # � ( �
� 
)( ��� � ��� � B #�� ( � �	� D

Let �
�

stand for machine � idle times. Computing the
makespan using machine � , we have :

������� �
� /���� ��� B #��

( � �	� D ( � # � ( �
� 
 ( B � > $ D � �
( ��� � ��� � B # � ( � � � D

It follows that �
� � � , i.e. machine � is never idle.

For different values of � , the critical machine may be
different. We now try to find special values of � at which
the critical machine changes. With these values, all the
possible values of � can be divided into some intervals
so that the critical machine is the same for all � in
an interval. Then we can solve the whole problem by
solving the subproblems defined in each interval.
Some machines may never be the critical machine.

Proposition 4

For a machine � , if there is another machine 
 such that
either � ��� � � and # � � # � , or � � � � � and # ��� # � ,
then machine � will never be the critical machine.

Proof

Clearly for any positive � , � B � � > � �1D ( # � > # � �� B �	� > � �2D ( #�� > # � . Therefore machine � will never
be the critical machine.

It is clear that, if there are more than one machine
having the same unit processing time and the same
loading time, then either all become critical for some
interval for � , or none of them will become critical.
Therefore we only need to consider one of them as the
critical machine and we call the others duplicate critical
machines. Alternatively, we can assume w.l.o.g. that no
two machines have the same unit processing times and
loading times. We make this assumption in the sequel.

We now analyze the special values of � (and corre-
sponding � ) at which the critical machine changes.

Proposition 5

The possible critical machines can be renumbered as � � ,
�'+ , ..., so that ���	� / ����
� � 
 / � � �

� ����
 / ������ � � / � � 

� ����� / ����
� � 
 /�� � �

�    

and ��� is critical when � - ���	� / ����
� ��
 / � ��� , �'+ is critical

when ����� / ����
� � 
 /�� � � -)� - ���	
 / ���	�� � � / � � 
 , ��� is critical when

���	
 / ���	�� � � / � � 
 - � -����	� / ���	
� � 
 / � � � , and so on.

Proof

Let ��� , �'+ , ..., be such that � � 
 � � � � � � � 
 �    and# � 
 � # � � � # � 
 �    
For 
 �%$ ���=�� ! � &� let � ��� � � � � ����� � 
 / ������ ��� / � ��� � 


B � �3D .

If � -�� ��� � � � , then� B � � ��� 
 >�� � D ( # � � � 
 > # � � � B � � � > � �2D ( # � � > # � , i.e.,� � (resp � � � � ) is (resp is not) likely to become critical.

If � ��� ��� � � � , then� B � � ��� 
 >�� � D ( # � � � 
 > # � - � B � � � > � � D ( # � � > # � , i.e.,� � � � (resp � � ) is (resp is not) likely to become critical.

From
� ��� � � + � ������� � / ������ � � /�� � ��� �

� ����� � � / ����� � 
� � � / � � � � �
( ����� � 
 / ������ � � / � � � � �

�
� � � � � � � + � ��� � 
 / � ��� � �� ��� / � ��� � �

( � ��� � � � � ��� /�� ����� 
� ��� /�� ����� �
it follows that � ��� � � + - 5���� ; � ��� � � � � � � � � � � � + ? and
� ��� � � + � 5A648 ; � ��� � � � ��� � � � � � � + ? , i.e., � ��� � � + is always
between � ��� � � � and � � � � � � � + .
Assume that � ��� � � ���!� � � � � � � + for some 
 , then for �#"
� � ��� � � �!�$� � � � � � � + � , the index � � � � will never become crit-
ical. Indeed for � �%� � � � � � � + , � � � + is more likely to
be critical than � � � � and for � -#� ��� � � � , � � is more
likely to be critical than � � � � . Hence, the interval of �
in which � � � � is potentially critical is empty. So � � � � is
not the index of a possible critical machine, and thus can
be removed from the list. The remaining machines can
be renumbered: � � � +'& � � � � �0� � � �(& � � � + , a.s.o.

We can do this until all the remaining machines are true
potential candidates for becoming critical, and � ��� � � � �
� � � � � � � + for all 
 . This completes the proof.

From the above result, we can obtain the special values
of � : � � � + � � + � � �    � �*) /�� � ) , and the corresponding
special values of � : � � � + � � + � � �    � �$) /0� � ) . Clearly,
the total number of these values, � , is less than or equal
to � .

These special � values divide the interval � �=��+,� , into
� ( $

intervals:

� �=��� � � +�� �-� � � � + �1� + � ��� �  � ! ��.� �$) /�� � )��*+/� .



For each interval, � � ��� � � � ��� � � � � � � +*� , the critical machine� � � � � � , we define the constrained subproblem

5 ��� � ����� � ��� ��� # �
( B � > $ D # � ( � � 


( B � > �
� D � 
 �  �  � ��� � � � � � �� � � � � � � + ,
where � � � �� ��� �	� .
Now we try to solve the subproblem:�������
	� 
 � # � > 
���
 / �����
 �� � ������	� 
 � � � 
���
 /�� � �


 
 � ��� for � - �

Therefore, the � making
��� ���
	� 
 � � is the optimal

solution to the continuous version of the subproblem
without the constraint.

Solving # � > 
 B � > � � D��	� + � � we get��� ��� 
 B � > � � D�� # �
Since � ����� is a convex function of � , the integer uncon-
strained solution � � is either � � ��� or � � ��� , whichever
yields the least � � � � .

If � � lies within the interval constraint of the subprob-
lem, it is optimal for the subproblem; if it is less than
the lower bound of the interval, then the smallest integer
in the interval is the optimal solution; if it is greater than
the upper bound of the interval, then the largest integer in
the interval is the optimal solution. If there is no integer
in the interval, then this subproblem is not feasible.

After all these subproblems have been solved (note that
at least one subproblem has a feasible solution), then
the best solution (ie the one which yields the minimum
makespan) will be the optimal solution for the entire
problem.

4. CONCLUSION

In industrial practice, the sublot sizes are usually taken
to be a constant. However, the number of sublots has to
be optimized. We have seen in this paper that the slowest
machine never remains idle in case there are no loading
times inbetween the processing of two sublots.
In case some loading times are required, then we have
shown the existence of a critical machine, whose rank

depends on the number of sublots. We show also how the
optimal number of sublots can be determined by solving
a sequence of subproblems, and the best solution to all
these subproblems will yield the optimal solution to the
problem.
The results in this paper can be very useful for the op-
timization of some industrial processes. Moreover, they
can be seen as a first, simple approach to the general
problem of finding the optimal number of sublots when
the sublot sizes are also decision variables (cf Sriskan-
darajah and Wagneur, 1999).
There are many practical reasons to use equal sublots.
However, from a theoretical point of view, if the sublot
sizes are not restricted to be equal, the makespan may be
further reduced. Therefore, it is interesting to know how
far the optimal equal sublot solution is from the optimal
general solution.
Usually, in practice customers require a given amount
of product �'� , at some due date ������� � $ � �=�� ! � &�� .
Then it is of crucial importance to know if it is possible
to satisfy the demand at these due dates. One way of
doing this is to process sublots of equal sizes, and to
verify that they meet the demand requirements. If this
is not the case, then we have to look at the problem with
with variable sublots sizes. In this sense, the contribution
of the paper may be seen as preliminary contribution
towards this goal.
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