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Abstract: From previous studies of (Besançon, 1999; Besançon, 2000) on adaptive observer
design for nonlinear systems, and the contribution of (Zhang, 2001) on exponential adaptive
observers for linear time-varying systems, the purpose here is to propose some new observer
design for a class of nonlinear systems. This observer can in turn be made adaptive, and in
particular can help in detecting changes in some parameters. Copyright c

�
2002 IFAC.
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1. INTRODUCTION

So-called adaptive observers are state observers with
some on-line adaptation w.r.t. unknown parameters.
Various results are available for linear systems going
back to the 70’s (Lüders and Narendra, 1973; Lüders
and Narendra, 1974, ...), as well as for nonlinear sys-
tems from the early 90’s (Bastin and Gevers, 1988;
Marino and Tomei, 1992, ...). Some unifying remarks
on such designs were recently proposed in (Besançon,
2000), in particular emphasizing some nonlinear adap-
tive observer form from which an asymptotic state and
parameter observer was proposed. From this, and the
contribution of (Zhang, 2001) on exponential adaptive
observers for linear time-varying systems, it will be
shown here how those available adaptive designs can
lead to new observers for a class of nonlinear systems.
Such observers in particular encompass problems of
state and parameter estimation. They can thus be used
to detect changes in parameters, or to estimate con-
stant faults which might affect the system.

The underlying previous results which will be used
are first recalled in section 2, while the new design
will be presented in section 3. An example illustrates

the possible use of such a design in section 4, while
some conclusions end the paper in section 5.

2. BACKGROUND RESULTS

In (Besançon, 2000), it has been highlighted how
most systems for which an adaptive observer can be
designed are systems which can be written as follows:������
	��
������������������	��
����������������������  "!#���$���  &%����'���  )(��*�,+-	��
�������������.�&�/���  "0 (1)

where:

(1) � is the measured output; � denotes a vector
of unknown parameters; � denotes the control
input, and � denotes the dependency on any other
available time-varying signal;

(2) There exist a proper decrescent positive definite1�2
function 3 	��.�546� , such that for any initial

condition 798 �;: � 8� 8=< for system (1), any input�>�@? , any function �A	���� satisfying (1) with
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control � and �A	 � � � � 8 , any � �54 � �  0 , and
any ��� � one has:� 3� � 	��.�546��� � 3� 4 	 +-	��A	����.�54 � � ���=	����.�������� +-	��A	����.� � ���=	����.�����������
	 	 46�.� (2)

for some positive definite function 	 .
(3) For any initial condition 7 8 � : � 8� 8=< for system

(1), any input � � ? , any function 7 	���� �: �A	������	���� < satisfying (1) with control � and 7 	 � � �798 , any � �54)� �  "0 , and any ��� � one has:	
� ��� �
	��A	����.�54 � � ���=	����.��������&�
	��A	����.� � ���=	����.�������
������� 	 	 46�.������� ��������.��	��A	����.�54 � � ���=	����.���������	��A	����.� � ���=	����.��������� ��!"� 	 	 46�.����!#� � (3)	
�$� ���.��	��A	����.����	����.���=	����.�������%�'& �(&(� ��) (4)

For such a system, an adaptive observer can be simply
designed as follows (for any *�+ � � ):�,��� �
	��
� ,����������������	��
� ,����������� ,�%� *-+ 	 ,���*���.�� ,�*� +-	��
� ,������������,���.� *�/ �"0�	��
� ,����������� 	 ,�1�*���20 � *�/ � � (5)

In this design, the asymptotic convergence of the state
estimation error is proved, while that of the parameter
estimation error can be obtained under some classical
additional assumption of persistent excitation.

In the case of linear systems, (Zhang, 2001) provides
a result for exponential convergence of the parameter
estimation error, which will be shown here to be useful
in extending the above results. In short, the main result
of (Zhang, 2001) is as follows:
Given a system

�7 	���� �43#	���� 7 	���� �.5 	������=	���� �6 	����������A	���� ��7'	���� 7 	���� and a gain 8 	���� such that:

I.
�9A	������ 	:3#	����"� 8 	����;7'	������<9A	���� is globally expo-

nentially stable;
II. = 	���� solution of

�= 	���� � 	:3#	������ 8 	����;7'	������ = 	����5�6 	���� satisfies the following persistent excitation
condition: > �?� � �@
A 0B

@ =
0 	
C9�;7 0 	
C9�ED 	
C9�;7'	
C9� = 	
C9� � CF�HG6� (6)

for some bounded positive definite D 	���� , and
some positive constants I �EG ,

then the system below is a global exponential state and
parameter observer:�,7 	����#�J3#	���� ,7 	���� � 5 	������=	���� � 6 	���� ,� 	����5���K 8 	������ = 	����2L = 0�	����;7%0
	����ED 	����$MONN(K �A	������F7'	���� ,7 	����$M� ,�9	����#�JL = 0�	����;7%0
	����ED 	����PK �A	����Q�F7'	���� ,7 	����$M

On the basis of both results which have been here
recalled, some new observer design can be proposed.

3. NEW (ADAPTIVE) OBSERVER

Combining the ideas of the previous section, we can
propose an observer for systems of the following form:�� ���
	��
������������� ����	��
�������������<R���� �,+-	��
�������������.��R �TS 	��
�������������� � �  "!#��� � �  &%����/���  0 �;R/���  )( (7)

where � still denotes the measured output, provided
that conditions (2), (3), and (4) are still satisfied, and
with three additional ones:U For any �A	����.����	���� solution satisfying (7) with� � ? , and for any ��� � :
��S 	��A	����.�54
� � ���=	����.�������VS 	��A	����.� � ���=	����.�������� �XW�� 	 	 46� ���XWY� � (8)

U For any �A	����.����	���� solution satisfying (7) with� � ? , and for any ��� � , ��	�����Z � ��	��A	����.����	����.���=	����.�����
satisfies the persistent excitation condition, i.e.:

[ I �O&(� � Z > �?� � � @
A 0B @ ��	
C9��� 0 	
C9� � C\�]&.� � � (9)

U R�	���� remains bounded. (10)

Notice that (7) now includes some dynamics for what
was the vector of constant parameters � in (1).
For such systems we can state:

Theorem 3.1. For a system (7) where � is measured
and conditions (2), (3), (4), (8), (9), (10) are satis-
fied, system (11) below is a global asymptotic state
observer, in the sense that for any initial conditions,^ �$_ @:`ba � ,�A	����
� �A	�������� ^ �$_ @:`ba � ,��	����
� ��	������ �^ �$_ @:`ba � ,R�	����c�VR�	������&� � .�,� ���
	��
� ,����������� ����	��
� ,����������� ,R�-	 *-+ � *edf="= 0�� 	 ,���*���.� *-+ � *ed � ��,� �,+-	��
� ,������������ ,R �g� *ed�= 0 	 ,�1� �����FS 	��
� ,������������= �g� *-+h= ����	��
� ,�����������

(11)

The proof is achieved by combining ideas of (Besançon,
2000) and results of (Zhang, 2001):
Let 4 + Z � ,�b� �
��4hijZ � ,�
� ��� and 4 d Z � ,R
�kR denote
the observation errors. Then by (2), 4ei goes to zero.
For the others, given a function l of the state, let m�l
denote the error between its value at the state of the
observer, and the one at the state of the system. Then:�4 + � m � � m ��R ����	��
� ,����������� 4 d � 	 *-+ � *ed�="= 0=� 4 +�4 d � m S.� *edf= 0 4 +



Now set � + Z � 4 + � = 4 d . This, together with the
expression of

�= , yields:�� + � � *-+ � + � m � � m ��R%� =�m S )
By boundedness of � , = is also bounded, and R is
bounded by assumption (10). From this, together with
conditions (3), (8), the dynamics of � + , and that of 4 i ,
one can easily conclude that � + asymptotically goes to
zero.
It now remains the problem of 4 d . Injecting 4 + � � �= 4 d in its dynamics, we get:�4 d � � *edf= 0 = 4 d ���
where � goes to zero as � + �54hi do.
On the other hand, it has been shown in (Zhang, 2001)
that if = satisfies (9), the homogeneous part

�4 d �� *ed�= 0 = 4 d is exponentially stable. From (11), = is
constructed by filtering ��	��
� ,����������� by a linear stable
filter, and ��	��
� ,����������� � ��	��
������������� � m � where��	��
������������� satisfies (9) and m � goes to zero. From
this, = also satisfies (9) (see (Ioannou and Sun, 1996)
for instance), and thus the homogeneous part of the
equation on 4 d is exponentially stable.
By combining this with the convergences of � + and 4hi ,
we get that 4 d goes to zero, and since = is bounded, 4 +
finally also goes to zero, which ends the proof. �

At this point notice that:

(1) If R is constant, namely represents some vector
of unknown parameters, we come back to the
structure considered in (Besançon, 2000), with
an alternative observer design derived from a
technical result of (Zhang, 2001).

(2) If R is partially constant, theorem 3.1 extends
the result of (Besançon, 2000) on adaptive ob-
server design, but with a dynamic gain for the
parameter adaptation ( = ). If one is not interested
in exponential parameter convergence, but just
asymptotic convergence, one can distinguish inR constant parameters � from non constant states7 , and design an observer as above for the 7 part,
and with a constant gain as in (Besançon, 2000)
for the � part.

(3) By further noting that the exponential conver-
gence which is achieved for the R part, can be
made as fast as desired by tuning *-d , one might
extend even more the considered class of systems
by allowing S to depend on R as follows:������
	��
������������������	��
�������������<R����*�,+-	��
�������������.��R��TS 	��
���������;R������

�����  "!#���$���  &%����'� �  0 �;R/� �  )( (12)

with similar assumptions as above, and the ad-
ditional one that S must be globally Lipschitz
w.r.t. R , uniformly w.r.t. 	��
������������� .

(4) Finally, by considering the case of possible con-
stant faults affecting the system, the proposed
observer allow to detect them by simple estima-
tion, provided that they enter the system via R in
(12).

4. ILLUSTRATIVE EXAMPLE

In this section we present a small academic example
as an illustration of state estimation or fault detection
based on the design previously proposed.
We thus consider the system described by the follow-
ing representation:�7 2 � 7�� � 7 2 7�� � 7 � 2 ��� 2 �'��� ��� � � 	 7�� ��7�� �g�
	 7�� ����
 � 	 7�� � � 7 2�7�� � � � 7 �� 7����� 7 2 (13)

By considering that � 2 ��� � are basically constant (
�� 2 ��� � � � ), it is easy to check that this system is under

the form (12) (where R'� 	 7�� � 2 � � � 0 ), and with�=	����*� � � � 	��6��� for instance, it appears that the re-
quired conditions for our observer design are satisfied.
First, if parameters � 2 ��� � are known, theorem 3.1 pro-
vides an observer for 7 2 � 7�� � 7�� as illustrated by sim-
ulation results of figure 1 (where *�+ ��� � � *ed ��� �-� ).

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

Fig. 1. State observation errors for system (13) with� 2 ��� � known.

If � 2 ��� � are unknown, as well as the whole state, the
proposed observer allows to estimate them together
with the state, as shown by estimation errors repre-
sented by figure 2.

Finally, if � 2 ��� � correspond to possible faults which
might affect the system, the proposed observer pro-
vides some fault detector through the estimates

,� 2
and
,� � as so-called ”residuals”. Such estimates indeed

remain attracted by zero as long as no fault happens
( � 2 � � � � � ), and become different from when
a fault appears, indicating at the same time which
parameter is faulty.
Simulations corresponding to successive faults on � 2
and � � are shown in figure 3 (including some noise
affecting the system).
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Fig. 2. Observation errors in 7 and � for system (13).
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Fig. 3. Fault profiles (above) and fault detectors (be-
low) for system (13).

5. CONCLUSION

In this paper, it has been shown how from results
on adaptive observer design one can end up with
a new nonlinear observer design, and how in turn
this new observer provides some possible adaptive
schemes if unknown parameters enter the system in
a particular way, or even fault detectors if changes
of parameters are considered as faults. Finally notice
that the proposed new design enlarges the class of
systems for which an observer can be found, in the
sense that the considered structure do not fall into
classical structures for which observers are available.
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