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Abstract: Numerical solution techniques for a class of hybrid (discrete event / continuous
variable) optimal control problems (HOCP) are described, and their potential use in robotic
applications is demonstrated. HOCPs are inherently combinatorial due to their discrete
event aspect which is one of the main challenges when numerically solving for optimal
hybrid trajectories. One may associate a continuous nonlinear multi-phase problem with each
possible discrete state sequence. Two solution techniques for obtaining suboptimal solutions
are presented (both based on numerical direct collocation): one fixes interior point constraints
on a grid, another uses branch-and-bound. Numerical results of a robotic multi-arm transport
task and an underactuated robot are presented.
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1. INTRODUCTION

Solutions to nonlinear optimal control problems play
a key role in modern mechatronics and robotics and
particularly in the area of path, trajectory, and ac-
tion planning. Some of the many applications in-
clude: walking pattern and trajectory planning (Hardt
et al., 2000), mobile robot path planning (Kondak and
Hommel, 2001), optimal payload (weight) lifting and
acrobatics (Martin and Bobrow, 1997; Albro and Bo-
brow, 2001), etc.
HOCPs with variable structure (switched) nonlinear
differential equations describing a piecewise continu-
ous subsystem coupled with discrete-event dynamical
subsystems have recently received increased attention,
see e.g. (Buss et al., 2000; Buss, 2001; Tomlin, 1999).
The key to numerically solving HOCPs appears to lie
in the combination of efficient numerical solvers for
optimal control problems – such as direct collocation
– together with (heuristical) approaches to reduce the
combinatorial complexity of the discrete event aspect
(Buss et al., 2000; Stryk and Glocker, 2000).
This paper presents numerical solution techniques
for HOCPs with applications in mechatronics and
robotics. An example problem of 3 robotic arms coop-
eratively transporting an object from an initial to a goal

position is solved suboptimally by fixing interior point
times and state constraints to fixed values on a grid.
The trajectory planning problem of an underactuated
robot with an unactuated joint equipped with only a
holding brake is solved with branch-and-bound to ob-
tain optimal hybrid trajectories including the optimal
number of switches for the holding brake.
Both approaches rely on the efficient numerical tool
DIRCOL implementing a direct collocation method to
approximately solve nonlinear optimal control prob-
lems using advanced nonlinear programming meth-
ods (Stryk, 1999), see also (Stryk and Bulirsch, 1992;
Hardt et al., 2000) and related work by (Branicky
et al., 1999; Hedlund and Rantzer, 1999; Sussmann,
1999; Tomlin, 1999).

2. HYBRID OPTIMAL CONTROL—HOC

The discrete-continuous model of a HOCP consists of
a set of ordinary differential or differential-algebraic
equations of variable structure and variable constraint
equations. The system structure varies among a (finite)
discrete set of system descriptions each of which is
associated with a specific discrete state of the consid-
ered hybrid system. The discrete state dynamics may
be modeled, e.g., by a finite state automaton or a Petri-
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net. Modeling paradigms of hybrid dynamical systems
are described in (Branicky et al., 1998; Engell, 1997;
Labinaz et al., 1996; Nenninger et al., 1999; Schlegl et
al., 2000).
Most of the hybrid models in the literature consider
the hybrid state of the system as a combination of the
continuous state x and a discrete state q. Likewise,
the control input is a combination of a continuous
component u and a discrete-valued component v. The
hybrid system state and structure changes discontinu-
ously when an autonomous or controlled discrete event
at a particular time or state occurs.
The HOCP is to find optimal hybrid (i.e., continuous u
and discrete v) control trajectories such that an integral
cost index, typically an integral of a function of the
hybrid system state and control input, is minimized
subject to the system dynamics, initial, terminal and
further equality or inequality constraints.

Definition 1. The HOCP is defined as the minimiza-
tion of the hybrid cost index J

min
u = v

J > u ? v @BA Θ C teD
ta

ψ > x ? u ? q ? v ? t @ dt ? (1)

subject to

ẋ A f > x ? u ? q ? v ? t @ if s j > x ? u ? q ? v ? t @�EA 0 (2)

j A 1 ?�F�F�F�? nsG
x > t Hi @
q > t Hi @(I A φ j > x ? u ? q ? v ? t Ji @ if s j > x ? u ? q ? v ? t Ji @8A 0 (3)

j KL- 1 ?�F�F�F�? ns
4

u > t @$K U MON nu ? v > t @$K V MQP nv ?
x > t @$K X MON nx ? q > t @RK Q MQP nq ?TS t KVU ta ? te W (4)

0 X h > x ? u ? q ? v ? t @1? t KYU ta ? te W inequality constraints ? (5)

x > ta @8A xa ? q > ta @8A qa initial conditions ? (6)

x > te @BA xe ? q > te @8A qe terminal conditions ? (7)

where the initial and final times ta, te are free or fixed,
s j are the ns switching functions and φ j denotes the
explicit phase transition conditions (jump maps) oc-
curring at the zeros of one of the switching functions.
The Mayer type part Θ of the performance index is a
general function of the phase transition times (events)
ti, i A 0 ?�F�F�F�? N, of the continuous x > t Ji @ , x > t Hi @ and
discrete states q > t Ji @ , q > t Hi @ just before and just after
the transition events written as

Θ : A Θ U x > t J0 @1? x > t H0 @1?�F�F�F�? x > t JN @6? x > t HN @ ;
q > t J0 @1? q > t H0 @1?�F�F�F;? q > t JN @1? q > t HN @ ; t0 ?�F�F�F;? tN W F

Here, ta A t0, te A tN is assumed while the number of
phases N may be given or free. The integrand ψ is
a real-valued function of the continuous/discrete state
and control variables and of time.
The minimization of (1) is subject to the initial and
terminal conditions (6), (7), admissible values for the
continuous/discrete control variables (4), and inequal-
ity constraints (5). Obviously, valid hybrid optimal
trajectories must obey the differential equations (2)
and the discrete-based phase transition equations (3).

The optimization parameters to be determined are the
continuous u > t @ and discrete control input trajectories
v > t @ and all, some, or none of the phase transition
times.

3. NUMERICAL SOLUTION STRATEGIES

The basis for the suboptimal solution strategies pre-
sented here is the highly efficient direct collocation
method implemented in the software package DIRCOL

(Stryk, 1999) which can approximately solve opti-
mal control problems through their transcription into
sparse, nonlinear programs. The strategy is to use
DIRCOL in the inner optimization iteration and other
strategies to solve for the combinatorial aspect of the
discrete-event in an outer level optimization, see Fig-
ure 1. The key to cope with the possibly overwhelm-
ing combinatorial complexity of HOCPs is to reduce
the number of candidates to be evaluated in the outer
iteration.

Select one discrete state sequence

Store optimal cost

until all sequences done

Select sequence with minimal cost

Solve the MPBVP using DIRCOL

Compute possible discrete state sequences

Key challenge: complexity reduction

Fig. 1. Outer level optimization iteration.

After providing some insights into the tool DIRCOL,
two alternatives HOCP solution strategies will be
shown: i) suboptimal solution with interior event time
and state constraints fixed on a grid combined with
graph search, and ii) branch-and-bound algorithm for
mixed-binary-optimal control problems.

3.1 Sparse Direct Collocation DIRCOL

The numerical method of sparse direct collocation
implemented in DIRCOL can efficiently solve multi-
phase optimal control problems with a fixed discrete
state trajectory. The state x is approximated by cu-
bic Hermite polynomials x̃ > t @7A ∑ j α j x̂ j > t @ and the
control vector u by piecewise linear functions ũ > t @ZA
∑k αkx̂k > t @ on a discretization grid tc

i A t [ i \1 ] t [ i \2 ]F�F�F ] t [ i \
n ^ i _t

A tc
i in each phase. The state differential

equations (2) are pointwise fulfilled at the grid points
and at the grid midpoints resulting in a set of non-
linear NLP equality constraints a > y @`A 0 (colloca-
tion at Lobatto points). The control or state inequal-
ity constraints are to be satisfied at the grid points
resulting in a set of nonlinear NLP inequality con-
straints b > y @8a 0. The vector y contains the ny parame-
ters y Ab> α1 ? α2 ?�F�F�F�? β1 ? β2 ?�F�F�F�? p ? tc

1 ?�F�F�F;? tc
nc
? t f @ T where

pi KQU 0 ? 1 W , i A 1 ?�F�F�F�? np denotes the set of relaxed bi-
nary variables. With φ as the parameterized cost index
(9), the nonlinearly constrained optimization problem
may be written as the NLP

min
y

φ > y @ subject to a > y @BA 0 ? b > y @Za 0 F



This NLP can be solved very efficiently with the
advanced SQP-based sparse nonlinear program solver
SNOPT (Gill et al., 1997); details about DIRCOL may
be found in (Stryk, 1999).

3.2 Suboptimal Solution Technique

Suboptimal solutions may be obtained by fixing inte-
rior point times and states to fixed values on a (fine)
grid. Between all these grid points standard optimal
control problems with fixed boundary conditions are
solved. Finally, the suboptimal solution to the HOCP
is obtained by a graph search with each grid point
forming nodes and the optimal cost weighing the ver-
tices of this graph. This solution strategy is applied to
solve the cooperative multi-arm transport problem in
Section 4.1, see also (Buss et al., 2000; Buss, 2001;
Denk, 1999). Disadvantages of this approach are the
possibly high number of multi-point boundary value
problems to be solved and the inherent suboptimality
of the obtained solution. On the other hand, an appeal-
ing advantage is that by problem understanding one
often has good insight as to how the grids need to
be specified, and that useful solutions usually can be
obtained easily.

3.3 Branch-and-Bound

The solution method for mixed-binary optimal control
problems (MBOCP) using a combination of sparse
direct collocation and branch-and-bound was first pre-
sented in (Buss et al., 2000; Stryk and Glocker, 2000).
Given certain assumptions, the HOCP may be trans-
formed into a MBOCP with a simple transformation
of its discrete variables. For this we assume:

(A1) The number nc a 0 of event times tc
i and, thus,

the number nc C 1 of phases are finite and known
(this assumption may be circumvented with yet
another “outer” iteration to vary nc).

(A2) The discrete state variable q and the discrete
control variable v are constant in each phase and
may only change at an event tc

i .
Each discrete variable qk > t @ (or vl > t @ ), 0 X t X t f , is de-
scribed by an integer variable zk KcP nc H 1 with qk > t @8A
zk = i in the i-th phase. A scalar, integer variable z1 with
given lower and upper bounds z1 KdU z1 =min ? z1 =max W MeP
can be transformed into a binary variable ω Kf- 0 ? 1 4 nz1

of dimension nz1 by

z1 A z1 =min C ω1 C 21ω2 COF�F�F�C 2nz1 J 1ωnz1
? (8)

with nz1 A 1 C INT - log > z1 =max g z1 =min @9h log2
4
. In this

manner, a binary control vector ω may be used to rep-
resent both the unknown discrete state q in each phase
and the discrete control variable v which controls the
order and types of phase transitions.
The MBOCP is to minimize the real-valued, hybrid
performance index

J U u ? ω W A nc H 1

∑
i i 1

ϕ [ i \ > x > tc
i g 0 @6? x > tc

i C 0 @6? ω ? tc
i @

C nc H 1

∑
i i 1

tc
iD

tc
i j 1

L [ i \ > x > t @6? u > t @1? ω ? t @ d t (9)

subject to (2)-(7) with the discrete variables q substi-
tuted by the binary control vector ω KQ- 0 ? 1 4 nω . The
solutions of the MBOCP are the optimal (open loop)
trajectories of x

� > t @ , u
� > t @ , 0 X t X t f , the optimal

phase transition times tc �
i , the possibly free final time

t
�
f , and the optimal binary control vector ω

�
.

To avoid solving all - 0 ? 1 4 nw MBOCPs a branch-and-
bound strategy in combination with a binary search
tree is employed:
(i) Find a global upper bound. Make an initial guess
for ω and solve the resulting control problem with ω
fixed;
(ii) At the root node, relax all binary variables (0 X
ωi X 1, i KY- 1 ? 2 ?�F�F�F�? nω

4
) and solve to obtain a lower

bound to the solution;
(iii) Select the branching variable ωi and solve both
subproblems with that component set to 0 and 1
thereby creating two offspring to the current node;
(iv) Select the next node where to continue the branch-
ing process by either: Breadth First Search (node
with minimal performance out of those with the least
amount of fixed components), Depth First Search
(node with minimal performance out of those with
the maximum amount of fixed components), Minimum
Bound Strategy (node with minimal performance);
(v) If the lower bound in a node is greater than the
current best upper bound of the whole search tree, then
all subsequent branches from this node are cut off.

4. APPLICATIONS

4.1 Multi-Arm Transportation Task

Figure 2 shows a cooperative multi-arm transport task.
The square object is initially on the right and is to be
transported to the elevated goal position on the left.
This is to be accomplished by picking up the object
with transport arm 1, handing it over to arm 2, then to
arm 3, and finally placing it in the goal position. Each
transport arm j has two rotational joints θ j = i driven
by control input torques u j = i, j A 1 ? 2 ? 3, i A 1 ? 2. The
effector of each transport arm can be opened/closed
to grasp/release the object by a discrete control input
v j. The transportation task should be performed such
that the cost index of quadratic power consumption is
minimized

min
u j k i [ t \l= v j [ t \ J A TD

0

3

∑
j i 1

2

∑
i i 1
> u j = i θ̇ j = i @ 2 dt F

To solve this HOCP we need to determine the optimal
hybrid control trajectories u

�
j = i > t @ , v

�
j > t @ , the positions,

velocities and times of object handover. The physical
parameters of the multi-arm system are assumed as:
mass m1 A m2 A 5, length l1 A l2 A 1 of link 1, 2,
respectively, object mass mo A 10, ground distance
from arm mount point xg A 1 F 5. The distance between
two arms is d A 1 F 5, the grid points for handover
of arm 1 are at y1 = ho A g 0 F 75, x1 = ho A 1 F 5/x1 = ho A 1
(ground/air), and likewise for the other arms.
For each arm i A 1 ? 2 ? 3 the hybrid model has 4 discrete
states qi A 1 ? 2 ? 3 ? 4 as follows: qi A 1: arm has no
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Fig. 2. Cooperative multi-arm transport task.

contact with environment, effector open; qi A 2: arm
holds object in configuration 1 (elbow right), object
has contact to ground; qi A 3: arm holds object in
configuration 2 (elbow left), object has contact to
ground; qi A 4: arm holds object in the air, no contact
with environment. The variable structure qi dependent
motion differential equation for arm i then are:

ẋi A f > xi ? ui ? qi @8A����� ���
f1 > xi ? ui @ if qi A 1
f21 > xi ? ui @ if qi A 2
f22 > xi ? ui @ if qi A 3
f3 > xi ? ui @ if qi A 4

(10)

Note that if qi A 2 ? 3 the arm is also subject to a
kinematic equality constraint as ground contact needs
to be maintained. Environment forces must also be
taken into account during such phases.
Applying the suboptimal solution strategy outlined in
Section 3.2, the coupling of the optimal control prob-
lems is first eliminiated for each of the transport arms
by fixing the possible times and states of handover to
constant values on a grid, see Figure 2. The object
handover time from arm 1 to 2 is fixed to t1 A 2 and
only two possible handover positions (on the ground
and in the air) are considered. Some of the handover
possibilities can be excluded because of internal arm
collision problems, e.g. handover in the air between
arms 1, 2 with configuration 2, 1, respectively.
All remaining feasible handover TPBVPs and the cost
of the optimal solutions obtained by DIRCOL are
shown in Figure 3. The 3 subgraphs are then combined
into the complete graph in Figure 4, in which the

best suboptimal solution is obtained by minimum path
search; also marked in Figure 4.
The best suboptimal solution to the transport task is
to pick up the object by arm 1 and hand it over to
arms 2/3 in the air at the fixed positions and times as
shown in Figure 2. Figure 5 shows some snapshots of
the suboptimal coordinated transportation task 1 .

4.2 Underactuated Robot R2D1

Now, we consider the trajectory planning example
application of a 2-link SCARA robotics arm with two
rotational degrees-of-freedom, one in each joint with
the torque u1 in the first joint and a holding brake
controlled by v1 > t @7Ke- 0 ? 1 4 in the second joint, see
see Figure 6 and (Mareczek et al., 1999) for details.
The brake can only be activated when the second
joint has reached a zero relative velocity. A discrete
control action can switch back and forth between the
passive and locked modes for the second joint while
a continuous control force is applied to the first joint
actuator. We are interested in finding not only the
optimal continuous state and control trajectories, but
also the optimal discrete strategy composed of the
optimal number and times of the switches necessary
to move the R2D1 from a given initial state to a goal
state. ���

����� ��� ���drive

holding brake

Fig. 6. Kinematic structure of R2D1.

The following H2 performance index is considered

J U u1 ? v1 W A t fD
0

> x > t @ g x f @ T W > x > t @ g x f @
1 An animated movie of the suboptimal solution is available at�6�1�9�(�l�1���1�1�(�����	���9�� �¡£¢9�£¤�¥�¦(��§6¢



C α > u1 > t @ g u1 = f @ 2 d t (11)

where W KdN 4 ¨ 4 , W a 0, and α © 0. Here, we use
W A I and α A 1. Furthermore, x f KªN 4 denotes a
desired final state, and u1 = f is the control value for
which the system is at equilibrium at x f . The final
time is constrained, e. g., by t f X 10 s. The HOCP is
to minimize J subject to the robot dynamics

θ̈ A¬« u1

0 ­ g v1 > t @ F1 > θ > t @6? θ̇ > t @�@g > 1 g v1 > t @�@ F2 > θ > t @6? θ̇ > t @�@
Fi > θ ? θ̇ @®A M J 1

i > θ @£> Ci > θ ? θ̇ @�C gi > θ @�C riθ @6?
i A 1 ? 2 ? (12)

x > t @BA¯> θ > t @1? θ̇ > t @�@
x > 0 @BA x0 A°> 1 F 2 ? 0 ? 0 F 8 ? 0 @ T ?
x > t f @|A x f A°> π h 2 ? 0 ? g π h 2 ? 0 @ T ?
v1 > t f @BA 2 (brake on) ?

where Mi are the mass-inertia matrices for each dy-
namical configuration, Ci are the vectors of Coriolis
and centrifugal forces, gi are the vectors of gravita-
tional forces, and ri are the friction forces. The physi-
cal parameters in standard units are: l1 A 0 F 300, lc1 A
0 F 206, lc2 A 0 F 092, I1 A 0 F 430, I2 A 0 F 127, m1 A 10 F 2,
m2 A 5 F 75.
The optimal control problem for R2D1 is formulated
as a MBOCP, and the numerical approach discussed
in Section 3.3 is applied. The time t f X 10 is initially
divided into a fixed number m A 8 of phases, though
the intermediate times corresponding to the phase tran-
sitions may vary freely. Included in the problem for-
mulation are a set of constant, unknown binary pa-
rameters pi KV- 0 ? 1 4 , i A±- 1 ?�F�F�F�? np

4
which are related

to the unknown binary variables ωi. They determine
the total number of switches and indicate at which
of the pre-defined phase transitions a switch occurs.
The first component p1 indicates in which discrete
state the system starts, - p1 A 0, brake off; p1 A 1,
brake on

4
. The remaining components of p are a bi-

nary representation for the total number of switches
taking place during the time interval. For example,
if five switches occur beginning with the brake off,
then p A°U p1 p2 p3 p4 W A°U 0 1 0 1 W and the switches are
assigned to the predefined phase transitions using the
scheme:
pk A 1 : 2 [ np J k \ switches with one every 2k J 1 phase
transitions beginning with no. 2 [ k J 2 \ th C 1.
The branch-and-bound search strategy was used to-
gether with a minimum-bound node selection strategy.
Figure 7 displays the complete binary search path for
the problem. An initial solution with p fixed at U 0 1 0 0 W
(4 switches) is first calculated to obtain a upper bound
of J

� A 41 F 156. Lower bounds were first calculated
for the root node’s children, and the second binary
variable is arbitrarily first selected as the branching
variable. The final optimal solution has a discrete so-
lution of p

� A²U 0 1 1 1 W corresponding to 7 switches
starting with the brake off and an objective value of
J
� A 39 F 062. Normally by such a branch-and-bound

Nr: 0
BV: 2
UB: 41.157
LB: −−−

Nr: 1
BV: −−−
UB: 41.157
LB: 43.724

Nr: 2
BV: 1
UB: 38.982
LB: 38.982

Nr: 3
BV: 3
UB: 38.979
LB: 38.979

Nr: 4
BV: −−−
UB: 38.982
LB: 39.289

Nr: 6
BV: 4
UB: 38.824
LB: 38.824

Nr: 5
BV: −−−
UB: 38.979
LB: 41.092

Nr: 7
BV: −−−
UB: 38.824
LB: 39.168

Nr: 8
BV: −−−
UB: 38.824
LB: 38.824

0

0

0

0

1

1

1

1

Fig. 7. Branch-and-bound search using minimum
bound strategy. Nr – node number from search
order, BV – branching variable, UB – global upper
bound, LB – lower bound for branch.
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Fig. 8. Final optimal hybrid switching solution with 7
switches.

search, if an integer solution is obtained when solv-
ing a relaxed problem which provides the best lower
bound, the search procedure ends. In this case, our
optimal solution was obtained already at node 2, af-
ter the third optimization run. The search though was
continued here to verify the solution and ensure that it
did not correspond to a local minimum.
The final solution displayed in Figure 8 has an optimal-
ity error of w̃ A 0 F 567 2 . The incremental difference
in the objective decreases rapidly with an increasing
number of switches: Ns A 0 ? 2 ? 4 ? 5 ? 6 ? 7, cost J

� > Ns @|A
104 F 09 ? 43 F 724 ? 41 F 157 ? 41 F 092 ? 39 F 168 ? 38 F 824, respec-
tively. The average computational time by DIRCOL for
each optimal control problem (the solution at a given
node) was 19.6 seconds on a Pentium III 500 MHz
computer, the average grid size used was ∑nc H 1

i i 1 n [ i \t A
56 F 3, and the average NLP dimension was ny A 278,
na A 230.

2 An animated movie of the final solution is available at�6�1�9�(�l�1���1�1�(���£¥´³���¥"¦6µ£¶;��³'·1�'¥"¸(�¹�9�� 1§6·9��³����6·1§1�/��§£¢



5. CONCLUSIONS

A class of hybrid (discrete-continuous) optimal control
problems has been defined and solution strategies have
been proposed. The first approach decouples HOCPs
by fixing interior point time and state constraints to a
grid of possible values. Useful grid assumptions are
likely to be available from problem insight. Solutions
to the decoupled TPBVPs may be obtained with avail-
able numerical software, and their optimal costs are
assigned to a graph whose nodes represent the grid
points and vertices the optimal cost. In this graph the
best suboptimal solution is found by minimum path
search. Alternatively, a bround-and-bound strategy is
proposed based on the decomposition of HOCPs into
MBOCPs. Binary variables are successively relaxed
to obtain upper and lower bounds on the solutions.
The search in the resulting solution tree is performed
with branch-and-bound. Two robotic applications of a
cooperative multi-arm transport task and a trajectory
planning problem of the underactuated robot R2D1
have been presented to validate the two suboptimal
solution strategies for HOCPs.
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