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Abstract: In this paper we dealt with a new formulation of the classic total expected
value - discounted cost (TEV-DC) control problem, over an infinite time horizon,
where a set-valued control policy and a set of initial states must be found. The control
problem is applied to a periodic discrete-time dynamic system, affected by stochastic
disturbances. The solution is obtained by manipulating the solution of an analogous,

but point-valued, TEV-DC control problem.
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1. INTRODUCTION

In the automatic control theory the feed-back
control law solving an optimal control problem
has been always assumed to be point-valued, i.e.
a function my(-) that, givena state value z; at
time t, produces a single value for the con trol
uz. The rationale of this assumption is that the
controller is a device which must control the sys-
tem without the human interven tion. How eer
automatic control theory has been applied also
to the economic and en vironmertal fields, where
the controller rarely substitutes the human, more
frequently, it suggests a ”suitable” (optimal) con-
trol action, while the final decision is left to the
decision maker (DM). Moreover, when solving an
optimal control problem, it may happen that for
a given state z; the optimal con trol value wu,
is not unique; i.e. there exists a set M;(x;) of
equivalen t (optimal) corrols. Then the DM would
take advantage in knowing the set M;(x;) of the
”equivalen t” comrols, since (s)he may choose the
more suitable one to the situation. In fact in the
definition of the control problem it is generally
impossible to completely specify the complexity
of the real w orld and therefore only a limited
set of all the possible goals is actually taken into
account. Therefore the set M(z;) is the set of
controls that at time ¢ are equivalen tfrom the

point of view of these goals, but they might not be
equivalent with regard to other goals not included
in the original problem formulation. Thus the DM
may usefully discriminate in My(z¢).

On the basis of these considerations in a previ-
ous paper (Aufiero et al., 2001a) we proposed to
broaden the notion of control law by assuming
that it is a set-valued function M;(x;), of the state
x¢, and that the DM may arbitrarily choose a con-
trol us out of it. In this paper we explore the op-
timal design problem of set-valued control policy.
The system under control is a discrete-time, peri-
odic system affected by an uncertain disturbance,
and we assume that the disturbance has a cyclo-
stationary stochastic description. More precisely
the problem is to find the set-valued policy that
minimizes the total, expected value, discounted
cost (TEV-DC) occurring over an infinite-time
horizon, i.e. attention is paid to the average per-
formance of the system in the long run. Two rea-
sons justify the adoption of the total discounted
cost as performance index: first the introduction
of the discount factor is often mandatory when
the cost has a monetary interpretation, secondly
the TEV-DC problem is by far the simplest and
most well-behaved infinite horizon problem. This
is due to the contraction property induced by the
presence of the discount factor.



The aforementioned control problem is hereafter
denoted as set-valued TEV-DC control prob-
lem. Its point-valued version has been analyzed
by many authors: most notably Bellman (1957),
Howard (1960), Blackwell (1965), Denardo (1967),
and Bertsekas (1976 and 1977). All of them
adopted Stochastic Dynamic Programming (SDP)
to solve the problem and it is on the base of the
solution algorithm proposed by Bertsekas (1977)
that we will determine the solution to the set-
valued TEV-DC control problem.

The paper is organized as follows. The system, and
its point-valued and set-valued control policies are
described in Section 2. The point-valued TEV-DC
control problem is formulated and solved in Sec-
tion 3. In Section 4 an alternative representation
of the system is proposed, that turns out to be
particularly useful to formulate and solve the set-
valued TEV-DC control problem in Section 5. The
conclusions complete the paper.

Due to space limitation all proofs will be omitted.
They can be found in Aufiero et al. (2001b).

2. THE SYSTEM AND THE CONTROL
POLICY

Consider the following periodic, discrete-time,
discrete-space, dynamic system described by the
state equation:

Ti41 :ft(mt,ut,st) tZO,].,... (1)
where the state z;, the control uw; and the dis-
turbance ¢; are elements of discrete spaces S;,,
Su, and Se,, respectively. Owing to the periodicity
of the system we have that both the function
ft Sz, x Sy, x Se, = S;, and the spaces S,,,
Sy, and S, are periodic of period 7. We pose
some assumptions:

e the spaces S,, Sy, and S;, are finite sets and
therefore the system is an automaton;

e the control vector u; is constrained to take
value in a periodic not empty subset U(x¢)
of Sy,;

e the disturbance ¢; is assumed to be a random
variable at any time ¢, described by a periodic
probability distribution ¢:(- | z¢, ut);

A point-valued control policy (pv-policy)
p:[mt()) t:():]-)] (2)

for the system (1) is an infinite sequence of point-

valued control laws my(-) : Sy, = Su, (pv-laws).

It is periodic with period T

A set-valued control policy (sv-policy)
P=[M(), t=0,1,...] (3)

for the system (1) is a infinite sequence of set-

valued control laws M(-) : Sy, — (power set of
Su,) (sv-laws). It is periodic with period T.

Remark 1. A set-valued control law may have
two interpretations: it is defined as a set-valued
function, but it may also be seen as a set of point-
valued control laws: M (-) = {m.(-)}. Analogously
a sv-policy is defined as a sequence of set-valued
functions, but it may also be thought as a set of
pv-policies, i.e. P = {p}.

3. THE POINT-VALUED TEV-DC CONTROL
PROBLEM

A step-cost function gi(z:,u,er), is associated
with the transition from the state z; to z;11. We
assume this function is time variant, periodic of
period 7" and bounded. Given an initial state xg
and a pv-policy p, the cost functional that derives
from the application of Laplace’s criterion to the
total discounted cost over an infinite time horizon
is

1 t
J(zo,p) = 1\}1_1}100 Z R E@ [04 'gt(xtautagt)]

(4)

t=0,... ,N

The discount factor a satisfies 0 < a < 1. Note
that, in the expected operator E in (4), the se-
quence of disturbances is considered only up to
t, since the step-cost g:(-) does not depend on
the realization of the disturbance from ¢ + 1 on.
The cost functional (4) has a very direct interpre-
tation: if the initial state is xp and the control
policy p is applied, J(zo,p) represents the ex-
pected discounted total cost over an infinite time
horizon. The introduction of a discount factor is
often due, particularly when the step-cost has a
monetary interpretation. From the mathematical
point of view the presence of the discount factor
guarantees the finiteness of the cost value.

3.1 Formulation of the point-valued TEV-DC control

problem

Given an initial state xzo € S;,, determine an
optimal control policy p* such that

J*(zo) = J(x0,p") = mgn J (o, p) (5a)
Ty = fe(we, ug,€4) (5b)
uy = my(zt) € Up(zy) (5¢)

et ~ di(et] e, us) (5d)
p:[mt()7 t:0>]—7] (58)

Any control policy p* is said to be optimal when
J(@o, p*) = J*(20)-

3.2 Solution of the point-valued TEV-DC' control
problem

Prob. (5) belongs to the class of problems con-
sidered by Bertsekas (1977), from which we may
deduce the following proposition.



Proposition 1. The optimal value function J*()
satisfies the following optimality conditions:

J* () = hi(x) Yz € Sa, (6)

() = min FE T, Ut, E¢)+
¢ () utEUt(z)Etw(bi[gt( t>€t)

ta- h?t+1)m0dT(ft(mt7 “t,gt))] (7)

where b : S;, - RT t=0,...,7 — 1. In the
following, these functions will be called Bellman’s
functions. Moreover, if there exist pv-policies,
then at least one of them is T-periodic.

Remark 2. Bertsekas (1977) proposed an algo-
rithm to solve (7) in the stationary case. It is
possible to derive from it a new algorithm to
solve (7) in the period case, by applying the usual
procedure to transform a periodic system into an
equivalent stationary one. However in Aufiero et
al. (2001a), in a minimax framework, we have
shown that such algorithm is computationally re-
dundant and that it can be usefully substituted
by a slightly modified algorithm.

4. ALTERNATIVE REPRESENTATION OF
THE SYSTEM

In the previous section we described the system
by means of its state x;, the dynamics of which
is governed by the one step transition function
(1). This latter, given the state, control and dis-
turbance values at time ¢, uniquely specifies the
state x¢41. However when the disturbance value
is unknown and its stochastic description is given,
a probability distribution 7,4 is associated to the
state z;41. Then it is convenient to describe the
system by means of the state probability m;, the
dynamic of which is governed by a dynamic law
that can be derived from the one-step transition
function (1). In this section we present this law
and some of its properties that will appear to
be useful in the formulation of the TEV-DC sv-
problem.

4.1 State probability

Since the state set S;, is finite, m; is a vector,
with as many elements as the ones of S,,. The
value 7], of the z-component of 7; is the prob-
ability of occurrence of the state z, at time t. To
describe the time evolution of 7, it is convenient
to introduce a notation that is better suited to
finite state system. For ¢t = 0,...,T — 1, let us
ordinate the (finite) set S;,, so that a cardinal
number i is associated to each state z;. Thus a one
to one correspondence is established between the
element of S, and the set Sy = {1,2,...,C0(S;,)}
of natural numbers (where C(S;,) denotes the

cardinality of the set Sy, ). We will denote this one
to one correspondence by z; ¢ i. To each state
i € Sy and each control u; € Uy(wx), with x4 <+ 4,
there corresponds a transition probability d;” (us),
for any j € {1,2,...,C(Ss,,,)}, where & (u;)
denotes the probability that the next state will
be j, given the present state is ¢ and the control
uy is applied. These transition probabilities are
univocally determined by the system equation and
the probability distribution of the disturbances.
Given the probability distribution 7; and a pv
control law my(-) : S = S, (for simplicity we
adopt the same symbol for m(i) and me(zy)),
the probability distribution 741 at time ¢ + 1 is
computable by

Ter1 = fi (m, me (")) (8a)

The function f7(-,-) has the form (Markov chain)
f(me,ma (1) = Ag(ma(4)'m (8b)

where ' denotes transposition and Ay is a C'(S,, ) X
C(Sz,,,) stochastic matrix (i.e. all its elements
are non negative and the sum of the elements of
each one of its rows equals unity, moreover its ele-
ments are the transition probabilities &;” (m(i))).
Eq.(8) specifies completely the system and the
disturbances. Moreover Eq.(8) can be seen as the
transition function of a deterministic system with
state 7 and control my(-) (that is fixed open
loop). In particular, when, at time ¢, the state
x¢ <> 1 is known (and therefore all the components
of m; are null, but the i-th component that equals
unity), Eq.(8) tell us that 741 is given by

Tepr = Af(mq (i)'

where Al(my(i)) is the i-row of A;. Note that the
state 7; takes values in an uncountable set, and
therefore system (8) is not an automaton.

4.2 Alternative representation of the cost functional

We reformulate now the cost functional (4) by tak-
ing advantage of the notion of state probability.
Consider the sequence of disturbances [eg, ... ,&¢]
that is the argument of the expected operator E
in (4). This sequence can be considered as the
concatenation of two subsequences: [gg, ... ,&¢—1]
and [e¢]. Given the initial state zo and the feasible
control policy pjg 1), at time ¢ the first subsequence
maps into a state xz;, to which is associated a
probability [m¢],, (computable by recursive use of
(8)). Therefore, in (4) the expected value with
respect to [p,... ,&:—1] can be substituted by the
expected value with respect to x;. Then (4) is
equivalent to

J('r()ap) = m Z Itgﬂ't I:at . gt(xtautast)]

li
N—o0
t=0,... ,N e¢~¢¢
(9)



In (9) the expression in brackets is the discounted
cost that is expected to occur in the ¢-th transition
(given the probability 7; that results from the
previous decisions and disturbances). To set in
evidence this fact it is convenient to rewrite (9)
in the following form:

J(wo,p) = Jim D ji(mem()  (10a)
t=0,... ,N
where
Je(me,me() = B [o - ge(wy,us,e0)]  (10b)
e~
subject to
Ty = Tin(%0) (10c)
Tep1 = ff (me, me(+)) (10d)
U = mt(xt) € Ut(ﬂft) (106)
et ~ Pr(er | T4, up) (10f)
p=[m) t=0,1,...] (10g)

where 7;, is defined by:

Tin (o) @ [7],, = 1, [7], = 0Vz € Sz, andz # zo

Remark 3. Notice that for every t the value of the
cost functional (10a) is unaffected by the values
that the control law my(z;) assumes in states x;
such that [m¢],, = 0.

5. THE SET-VALUED TEV-DC CONTROL
PROBLEM

The cost functional of the pv-problem has two
arguments: the initial state and the pv-policy. In
the sv-problem these arguments are enlarged to a
set of initial states and a sv-policy.

5.1 Set-valued control policies

Consider a sv-policy

P=[M/(), t=0,1,...]

At any time t, once the state x; is known, the
DM chooses his(er) decision w; by arbitrarily
selecting an element wu; out of the set M (z;), i-e.
ug € Mi(xy). We do not know how the DM will
make his(er) choice, thus our system is affected
by one more uncertainty: the DM’s choice. This
uncertainty is naturally described by the set-
membership description (u; € My(x¢))-

The initial state set O We assume that the initial
state z¢ is no more given, we only know that it
belongs to a set O, i.e. 2o is assumed to have a
set-membership description:

:L’()EOQSIO

5.2 Again on state probability

When the control law is set-valued, the probability
distribution 741 is not anymore univocally deter-
mined given the probability distribution 7, since
it is unknown which control the DM will select
out of M;(z;). This implies that m(z;) in (8)
(for z; > i) has to be treated as a disturbance
of which a set-membership description is given.
Then there exists an analogy between system (8),
controlled by a sv-policy, and a system of type (1)
affected by a set-membership disturbance (Aufiero
et al., 2001a). Due to the presence of the sv
control law, the control u; = my(x;) plays in
the Markov chain (8) the same role played by
a set-membership disturbance e; in system (1).
Therefore we know that, given 7y, m;41 will belong
to a set Il (reachable(probability) set)

Ht+1 = {7rt+1 . Emt() S Mt() .
Ti4+1 = ft“(m,mt(-)) with ¢ given} (11)

More in general, if, at time ¢, we do not known
the probability distribution m;, but only a set Il
to which it belongs, the set II;;; is given by

Ht+1 = Ftﬂ'(Ht,Mt(')) = {ﬂ't+1 : Elﬂ't € Ht,
mi() € My() = migr = f{ (me,mu ()} (12)

Notice that (12) describes a system with state II;
and control M;(-). This system is deterministic
(in Ff(-,-) does not appear any disturbances),
since the uncertainty disappear when we move the
attention from the probability distribution m; to
the reachable (probability) set II;. Observe that
system (12) is not an automaton. Since system
(12) is deterministic we may associate it a multi-
step function

Ht = H(t,O,Ho,P[07t)) t= 1,2,... (13&)
where, the set-valued function II(-,-,-,-) is com-
puted by the following recursive procedure

Iy given (13b)

M,y = F*(I,,M,()) 7=0,...,t—1 (13c)

The definition of the transition function II(:,-, -, -)
is extended at time ¢ = 0 by setting

H(Oa 0, HO) P[O,O)) =1l (13d)

As said we assume that the initial state zo has a
set-membership description, i.e. o € O where the
set O is a design variable. Consistently the set Il
of initial probability my is a function of O, given
by

Iy, = Hln(O) = {7T0 DT = Win(l‘g) Vzo € O}

When the control policy is set-valued, given the
state T; 1, a state z; will be reachable at time
t if its probability [m{],, is not null. Hence the



reachable state set at time ¢ (conditioned to Z;—1)
is given by

{we € Sg, + Imp € U(t, 1 =1, T (Tp—1), Ple—1,0))
[me]e, >0} (14)

More in general, if the system starts at time t = 0
from the set O and it is controlled by P, the state
z; will belong to the set

Xy = X(t,0,0, P[O,t)) = {xt € Szt :
Ime € 11(¢, 0,11, (0), Ppoyy) = [me]e, > 0} (15)

5.3 The cost functional

When the cost functional depends on a set of
initial states and on a sv-policy, its structure has
to be modified with respect to the form (10) to
take into account the non uniqueness of the initial
state and the set-valued nature of the control
policy. These differences are fixed up as follows:

(1) Since the initial state is not given, but it is
known that it belongs to the set O, in the
definition of the cost functional it is sensible
to consider the maximum with respect to xg
in O.

(2) Since the proposed control is not unique
and we have no knowledge on the criterion
adopted by the DM to select a value u; out
of My(z), it is sensible to consider the worst
case, i.e. the maximum expected cost with
respect to uy in My(zy).

(3) As we already noticed, when the control law
is set-valued, the state probability, at time
t, is not uniquely determined. We only know
that it will belong to a set IT;. Therefore in
(10b) in the expectation with respect to 7,
it is sensible to consider the worst case, i.e.
the maximum expected cost with respect to
Tt in Ht.

Given these positions the cost functional of the
set-valued TEV-DC control problem is defined by

L(O,P) = lim

N —o00

Z li(Ig, My())  (16a)

t=0,... ,N

where

(L, My(-)) = max E { max

m €Iy Terme | up € My (24)
. qu [at -gt(a:t,ut,et)]} (16b)
subject to

Iy = {mo : zo € O : mo = Win(z0)} (16c¢)

My = FF (I, My(+)) (16d)

U € Mt(l’t) g Ut(l’t) (168)

et ~ di(es | T, ut) (16f)
P=[M() t=0,1,...] (16g)

In plain words, {;(Il;, M;(-)) turns out to be the
maximum, over the set II;, of the expected value
with respect to x; of the maximum cost over the
sets My (x¢) of the expected discounted cost with
respect to £¢;. Observe that when ¢t = 0, thanks
to (16¢), the first max operator of (16b) performs
the maximum with respect to o in O, as required
by point 1; while, when ¢ > 1, the same maximum
produce the effects required by point 3. Finally,
for all ¢, point 2 is operationally performed by the
second max operator in (16b).

Remark 4. Notice that, for any ¢, the value of the
cost function (16a) is unaffected by the values that
the control law M;(z;) assumes in states z; such
that [m¢]z, = O (observe the analogy with Rem.

5.4 Some definitions and theorems

Definition 1. (feasible couples) A couple (O, P)
is said to be feasible if it satisfies the following
constraints

O g S:to

P: Mt (CCt) g Ut (ZCt)

Theorem 1. (property of feasible couples) Given a
feasible couple (O, P) the following relation holds

L(O, P) = J
(O, P) max max (zo,p)

Definition 2. (larger couples) A feasible couple

(O, P) is said to be larger than a feasible couple
(O', P') and we write (O, P) > (O, P') if

020 (17a)

Mi(z) D Mj(z) V& € X(£,0,0', Py))  (17b)

and either (17a) is satisfied with the strict inequal-

ity sign or there exist at least one ¢ and one x such

that the condition (17b) is satisfied with the strict
inequality sign.

Notice that Def. 2 requires that the condition
(17b) is verified only for those states that are
reachable from O', with the policy P'. The set
of those states is a subset of the states that
are reachable from O with the policy P, as the
following theorem proves.

Theorem 2. (property of larger couples) If the
couple (O, P) is larger than (O', P') then
X(t,0,0, Py ) 2 X(t,0,0', P 4)
and
L(O,P) > L(O', P)



Definition 8. (optimal couples) A couple (O*, P*)
is said to be optimal if

L(O*,P*)=  min

L(O, P)
(O, P) feasible

where L(O, P) is defined by (16).

Finally we can state the following

Theorem 3. (property of the optimal couples) Given
an optimal couple (O*, P*), between the optimal
value L(O*, P*) and the value J*(-) of the pv-
problem the following relation holds:

L(O*,P*) = min J*(x)

To €Sy

Remark 5. From the Th. 3 it follows, that, if
the optimal couple is not unique, all the optimal
couples share the same value.

5.5 Formulation of the set-valued TEV-DC control
problem

Determine the largest optimal couple (O, P) such
that

L(O,P)= min

L P 1
(O, P) feasible ©,P) (18)

subject to (16).

5.6 Solution of the set-valued control problem

Prob. (18) is solvable by the procedure stated in
the following

Proposition 2. Let hi(-), t =0,...,T — 1 be the
Bellman’s functions solution of (7). Pose

I* = min hgj(xo) (19)

ToESag
Consider the following sets

O = {x0 € Sy : hi(x0) = 1"} (20a)

My(we) = {ut € Us(zt) = B [ge(e, ur, €0)+

et~Pe
By ymoar (i, u,20)] <17} (200)
Then the couple (O, P) with
P=[0o(), .., Mr_a(), Mo(),- ] (200)

is the largest optimal couple, i.e. the solution of
sv-problem.

6. CONCLUSION

This paper deals with the optimal design of sv-
policies. This type of policies is of definitive im-
portance in various fields, such as water and natu-
ral resources management, environmental quality
control and storage system management; i.e. in all
the fields where the notion of Decision Support
System is adopted. The design problem of such
a type of control policy has been formulated and
solved as an optimal periodic control problem in
the case of a discrete-time, periodic system af-
fected by a stochastic disturbance. The problem is
to find the ”largest”, periodic, sv-policy that min-
imizes the total expected value discounted cost
over an infinite-time horizon. This problem very
often emerges in the previously mentioned fields.

The problem is solved by an algorithm that in turn
requires to solve an analogous problem, obtained
from the previous one by substituting the sv-
policy by a classical point-valued one. The analy-
sis of the algorithm offers a deep insight into the
relationship between sv- and pv-policies.

The system controlled by the optimal sv-policy
turns out to be a Markov chain. Current research
is working to prove that this chain is characterized
by a unique ergodic class and to determine a pro-
cedure to compute it from the Bellman functions

hi ()-
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