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Abstract: The parametric Insensitive H2 control (IH2) problem is a useful method to deal
with some difficult applied control problems. Unfortunately, it is as yet unsolved. Some
important applications exist however in the case where a single parameter of the process to
control is uncertain (e.g. in the electricity or automotive domain). Although the heuristic
used in these applications effectively reduces the closed-loop parametric sensitivity
function, it does not lead to the optimal solution. This paper pursues three objectives. First,
it generalizes the existing heuristic to the multiparametric case. Secondly, the IH2 problem
is shown to be equivalent to an auxiliary standard H2 problem with structure constraints on
the feedback solution. This result allows authors to propose an original Iterative LMI based
algorithm. The third and last point demonstrates an implementation of the ILMI algorithm
to deal with an automotive control designs and finally compares the obtained results to the
previous ones. Copyright © 2002 IFAC
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1. INTRODUCTION

The robustness theory has produced numerous robust
design methods. Many of them use a criterion (H2, H∞,
L1, µ…) so as to quantify the quality of control. Two
steps are required in this case to find the controller: 1-
The definition of a pertinent criterion, 2- The resolution
of an optimization problem. The robustness may be
required a priori or verified a posteriori. Let us recall also
that system modelling is, also, a trade-off between
accuracy and usefulness. The question thus arises: how
can a robust design, based on a suitable criterion,
produce controllers with an adequate parametric
robustness and allow that any matrix coefficient of the
controlled system state space description be subjected to
parameter uncertainties?. Basic versions of LQG/H2 and
H∞ control design methods do not ensure such design
requirements. In fact, this issue has motivated many
contributions. Among numerous methods which try to
reduce the parametric sensitivity (Eslami, 1994), one can
quote the parametric LQG/LTR method proposed in
(Tahk, 1987) and the “desensitized LQG” control
((Begovich, 1992), (Heniche, 1995)). Approaches based
on a modified H2 cost functional to deal with parametric
uncertainties have been discussed thoroughly before
(Banjerdpongchai, 1996), (Shirley, 2001)). In fact, a
variety of methods have been used in practice to try to

make H2 controllers less sensitive to parameter variations
in structural systems. For a survey of the most promising
of these techniques, the reader is referred to (Grocott,
1994). The robust H2 control problem (Banjerdpongchai,
1996) belongs to this class of design problems. It is, in
principle, the best posed design problem but probably the
hardest to solve. In fact, we are interested in a design
approach that must ensure the classical design
specifications (nominal performance and robust stability)
that is guaranteed by the nominal H2 control, and also
reduce the sensitivity of the nominal performance with
regards to the system parametric variations. The
principles of the IH2 control problem were first presented
in (De Larminat, 1996). However, an efficient way to
deal with it failed until now. Two approaches are
investigated in this paper. The first consists in solving a
close problem as proposed in ((Gay, 2000), (De
Larminat, 1996)): The heuristic developed in ((Gay,
2000), (De Larminat, 1996)) will be recalled and
generalized to the multiparametric case. The second
approach takes advantage of the (exact) reformulation of
the IH2 problem given in (Chevrel, 2001) and proposes a
numerical method based on an Iterative LMI algorithm.
The two approaches will then be compared. Finally, the
presentation of this paper is as follows: The IH2 problem
is first presented in section 2. Section 3 generalizes the
heuristic proposed in ((Gay, 2000), (De Larminat, 1996))
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to the multiparametric case. In section 4, the IH2 problem
is shown to be equivalent to a structured H2 problem
derived from an auxiliary model. It is then reformulated
as a linear objective optimization problem under some
BMI constraints. We finally propose an original method
and an associated Iterative LMI based algorithm to solve
this optimization problem. Section 5 applies and
compares the two different methods to deal with an
automotive design problem. 

NOTATIONS
 ⊗  : The Kronecker product of matrices:
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2. THE IH2 CONTROL PROBLEM

Consider the scheme of figure 1 in which G is an LTI
operator with partitioned inputs and outputs and ∆  is an
unknown operator allowing the parametric uncertainties
to be taken into account. 
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Figure 1: Linear Fractional Representation of
parametric uncertainties

Let the transfer matrix ( )G s  associated to G be defined
by 
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Let also ∆  be defined by ( ) .ζ ζ∆ = ∆  with the particular
form 

1 1 2 2( , ,..., )P P q Pqdiag I I Iθ θ θ∆ =

with { }, 1, ,i R i qθ ∈ ∈ L  stacks the uncertain parameters. 
Finally we introduce the feedback K (associated to the
transfer matrix ( )K s ) according to figure 2. 
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Figure 2: Closed loop transfer function

All the transfers , ,  and zw z wH H H Hυ ζυ ζ  depend on the
feedback K.

The closed loop transfer matrix ( ( ), ( ))lF G s K s  has,

therefore, the partitioned form 
 
 

w

z zw

H H
H H

ζγ ζ

γ

 
 
  

. Closing the

“ ∆ -loop”, the final transfer wz  depends on both s
and θ  and can be written as 

1( )zw z wH H H I H Hγ ζγ ζ
−= + − ∆ ∆

In the following sections, the sensitivity function will be
considered in the neighbourhood of 0∆ =  (the nominal
model). The parametric sensitivity function is given by 

q z w
H I H Hγ ζθ θ
∂ ∂∆

= ⊗
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Definition 1: (The IH2 control problem (IH2P))
The objective of the IH2 control is to minimize, under the
constraint of internal stability and with respect to )s(K ,
the following index
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where 1( , , )qdiag σ σΣ = K  and each iσ ∈ℜ  is a
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parametric sensitivity with respect to iθ -.

3. GENERALIZATION OF AN EXISTING
HEURISTIC TO SOLVE THE IH2P

The heuristic proposed in (De Larminat, 1996), which
we will designate by “Heuristic 1”, is restricted to the
case where a single parameter is uncertain. The
presentation in this section generalizes this heuristic to
the multiple uncertain parameters case. In fact, the
problem addressed is not rigorously the IH2P but a close
one. In addition to the criterion 
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derivative of the parametric sensitivity function 
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is considered. In the multiparametric case, this criterion
can be written as:
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In fact, the approximation 
2

ˆ
IHJ J≅ may hold for

sufficiently small ( )1i i q
σ

≤ ≤
.

As a first stage, the algorithm is initialized as follows: A
standard H2 controller (obtained for 0Σ = ) denoted by

0K  is first computed. From this controller, the two
transfers 0( )wH Kζ  and 0( )zH Kγ  are derived. The
augmented model of figure (3) in which 0( )wH Kζ  and

0( )zH Kγ  play the role of weighting functions may then
be built.
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L  are

considered respectively as additional “noise” at the input
and error signals at the output.
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ŵθ

w

1
ˆθz

1θŵ
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Figure 3 : The first step of the algorithm
An iterative procedure can then be applied. A
controller 1K  is then designed that minimizes the H2

norm of the augmented model ( )/Z W  of figure (3)
where ˆ  T T T T

θZ z   z=   
 and ˆ    T T T T

θW w w=   
. 

At the ith iteration, the augmented model iP  of figure (4)
is derived from 1iK − . Controller iK  is designed in order
to minimize 

2
ˆ : ( , )i l i iJ F P K= .  

G

1
11 θ

σ γ ∂
∆∂′ − )K(H iz

q
izq )K(H

θ
σ γ ∂

∆∂′ −1

M M

q
ŵθ
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Figure 4 : The ith step of the algorithm.
By construction the following equality holds:
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where 1 ( , , ) q q
qdiag σ σ ×′ ′ ′Σ = ∈ℜK .

Taking / 2′Σ = Σ , it is hopped that the heuristic will
converge as: 
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The approximation 
2
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IHJ J≅  can be considered for

sufficiently small ( )1i i q
σ

≤ ≤
. This method suffers,

however, from some drawbacks. Even in the case where
the approximation 

2
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IHJ J≅ is justified, it leads to a
controller of very high order, especially in the
muliparametric case. At the ith stage: 
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The controller order may rapidly become “unsuitable” in
the multiparametric case ( 1)q > . The procedure proposed
in (Gay, 2000) in order to have constant controller order
along the iterations could be generalized to the
multiparametric case. It is, however, difficult to evaluate
how it will affect the convergence of the algorithm –
even if it seems to give some results. We will designate
this second heuristic by “Heuristic 2”. The question thus
arises: how far will the solution be from the IH2
optimum? . 

3. A NEW IH2P SOLUTION USING CONVEX
OPTIMIZATION TOOLS

The starting point of the solution proposed in this section
is the theorem (1) stated in (Chevrel, 2001). For
simplicity’s sake, this theorem is recalled next under the
assumption that qIΣ = . The general result, however, is
straightforward. The augmented model shown in figure
(5) is defined as follows:
The parametric sensitivity of the trajectory signals are
denoted by 
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The augmented model 1
aG  (see figure 5) with
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Theorem 1:  
The IH2 control problem is equivalent to the constrained
H2 optimization problem, (associated to figure5),
consisting in finding a stabilizing controller )s(K  that

minimizes the criterion 
2
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Figure 5: A structured H2 problem 

Proof: The detailed proof is given in (Chevrel, 2001).
The equality 

2 2 ( ) ( )H C IHJ K J K=  results from the



construction from the construction of the auxiliary model
1( )aG s . 

Using this result it is possible to show that the IH2
control problem is equivalent to a linear objective
optimization problem with BMI and LME (linear matrix
equality) constraints. 
Consider the following state space representation for the
controller ( )K s  

  
( ) :

 
K K

K K

A B
K s

C D
=
 
 
 

It is commonly known that the dynamic output feedback
design problem is a special case of the static one,
assuming a certain structure for the plant matrices.
The new control problem described by theorem (1) is
equivalent to the static output feedback H2 optimization
problem that consists in finding a stabilizing static output
feedback K̂  with the following structure 
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for the augmented model 2 ( )aG s (we suppose without loss
of generality (H): 0yu zwD D= = )
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Theorem 2: With assumption (H), the IH2P is equivalent
to the following linear objective optimization problem
under BMI and LME constraints:
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(4)

Because of the equality constraint on the static output
feedback K̂ , (4) cannot be simplified (as is usually done
for the classical H2 problem) to a convex optimization
problem with LMI constraints. As a result we propose
here to solve the IH2P using the ILMI algorithm that we
first developed to tackle some constrained control design
problems such as the H2 and H∞ decentralized control
(Yagoubi, 2001). The originality of this algorithm
consists in using a close approximation (not too
conservative) of some bilinear terms involved in (4). 
Generically, the constrained controller design problem
(4) involves some bilinear terms in X  and K  of the
form 

1 2 3 3 1 2( , ) ( ) ( )T TBL X K M KM XM M X M KM= + (5)
where 1M , 2M and 3M  are some constant matrices. 
Consider the bilinear constraint in X  and K  with the
special form 

( , ) ( , ) 0R L X K BL X K+ + < (6)
where R  is a symmetric constant matrix with the same
dimensions as X, ( , )BL X K  is defined by (5) and
( ),L X K  is a linear term in X and K  with the same

dimensions as X .
Our purpose here is to approximate the bilinear term

( , )BL X K  with a linear one. More precisely, the BMI will
be approached by a set QS  of LMIs parameterized by an
auxiliary matrix named Q . 
Theorem 2: 
i) Assume there exist TX X= , K and Q such that the
following holds

3 1 2

3

1 2

 0,   

   ( , )               ( )
0

                                             0
     ( )                  0              

T

T

X

R L K X XM M KM

M X I
M KM I

>

 + + Φ
  < − 
  −  

  (8)

where 3 1 2 3 1 2( ) ( )T T TQ Q Q XM M KM XM M KM QΦ = − − − − .
Then ( ),X K  satisfies the constraint (6) .
ii) For the particular choice 3 1 2Q XM M KM= − , the
conditions (6) and (8) are equivalent. 
Proof: (see (Yagoubi, 2001))
For a given matrix Q , finding ( , )X K  solution of the
inequality (8) is straightforward as the problem is
convex. In the following sections, we will designate this
linear constraint, parameterized by Q , by ( , , )Lmi Q X K .
This parameterization has some advantages over existing
ones. The solution of the BMI problem will coincide
with the solution of a particular LMI belonging to the set

QS . So, a “sub-problem” will be to find the parameter Q

that leads to the best approximation.
The proposed ILMI algorithm is given next in a generic
case. In fact, we consider the problem of minimizing a
linear objective ( , )J X K  under the BMI constraint (6). 
The initialization:
-For a stabilizing controller 0K  compute 0X :
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-Compute 0Q :
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The kth iteration:
- 1,  and k k kQ X K− are derived from the previous step.
-Compute kQ :

3 1 2k k kQ X M M K M= −

-Test 1k kQ Q ε−− <  for a given tolerance bound. If the

test is true then the algorithm is stopped and ˆ
opt kX X= ,

ˆ
opt kK K= . If the test is false then the pair 1 1( , )k kX K+ + is

computed by solving the following LMI problem 
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As with all local methods for solving BMIs, the choice
for the initial value is important for convergence to
acceptable solutions, which is a potential weakness of
these methods. However this is not really a drawback in
our case since we can use the standard H2 controller
(obtained for 0Σ = ) 0K .  

4. COMPARISON AND TEST ON AN AUTOMOTIVE
CONTROL

The practical interest of the new numerical algorithm
proposed in this paper is shown in this example through
a robust vehicle dynamics control as considered in (Gay,
2000).  The lateral velocity Vy and the yaw velocity ψ&
have to be controlled through two control inputs: the yaw
moment Cz that can be obtained by differential braking
and the rear steering rα  (see figure (7)). The vehicle
must stay near to the desired trajectory as shown in
figure (6). Disturbances acting on the vehicle can be
summarized into the lateral force F and the yaw moment
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In this model, m  denotes the weight, C  the inertia, 1l

the front wheelbase, 2l  the rear wheelbase and ( , )yv yrC C

the nominal cornering stiffness. Note also that the model
is parameterized by the road friction parameter µ  which
is, indeed, uncertain. The standard H2 problem to be
minimized to meet the control requirements is built
following the Standard State Control methodology as
adopted in (Gay, 2000). The nominal model has been
taken for a constant longitudinal speed 80 /xV km h= . The
H2 optimal controller is denoted by 0 ( )K s . Weithing the
parametric sensitivity function with 0 75.Σ = , two
controllers, namely 1( )K s  and 2 ( )K s , are derived using
respectively “Heuristic 1” and the ILMI numerical
method. Table (1) summarizes the results obtained:

The
controller

2

2zwH
2

2

 wz HH ζγ θ∂
∆∂

⊗Σ 2IHJ The
controller

order
)(0 sK 2.58 10.30 12.88 4
)(1 sK 6.13 4.30 10.43 20
)(2 sK 3.34 5.37 8.71 4

Table (1): numerical results

The controller 1( )K s  is obtained after only one iteration
in order to have a controller of admissible order. In fact,
for two iterations of the first heuristic presented in this
paper, the controller order would be 52. It appears that
the proposed ILMI algorithm gives significantly better
results in term of the IH2 criterion with a low order
controller (the same as the system). The computational
time is comparable for the two heuristics. A simulation
test is now performed in order to observe the effect of the
parametric sensitivity reduction. A lateral force step
occurs at t=1s and a yaw moment step occurs at t=4s.
The test is performed for two values of µ , ( )1µ =  and

( )0.6µ = . Figures (8) and (9) respectively report the
results obtained with the standard H2 controller and those
of the IH2 controller (i.e. 2 ( )K s  which is performed using
the ILMI algorithm). 
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Figure 8: performances obtained with  K0 . ( )1µ =

 [   ]and ( )0.6µ =  [---]

rα

F MzC

Figure 7:  The “bicycle” model

Figure 6 : Correction effects of zC  and rα



The above diagrams show the outputs and those below
show the inputs with respect to the H2 optimal
controller 0 ( )K s . 

Figure 9: performances obtained with  K2 . ( )1µ =

 [   ]and ( )0.6µ =  [---]
Controller 2 ( )K s  clearly improves the parametric
robustness in comparison with controller 0 ( )K s . Step
responses obtained with 2 ( )K s  are clearly less sensitive
to the road friction parameter. This example shows the
interest of the IH2 methodology together with the
efficiency of the proposed ILMI algorithm. Note also
that the resulting controller is of the same order as the H2
controller.
The ILMI algorithm has been initialized with the H2
controller. In order to save computation time, “Heuristic
2” could also be used to find a refined starting point for
the ILMI algorithm.

4. CONCLUSION

The insensitive H2 control is an interesting way to deal
with applied control design. Based on it, an efficient
multivariable control design methodology can be
proposed. This observation has motivated the present
work. After having presented the Insensitive H2 control
problem, an existing heuristic (“Heuristic 1”) has been
generalized to the multiple uncertain parameters case.
This heuristic suffers, however, from some drawbacks.
First of all, it does not deal strictly with the IH2 problem,
but with an approximated one. Secondly it provides high
order controllers. For these two reasons, the IH2 problem
has been revisited. The first step has consisted in proving
that this problem is equivalent to an H2 problem for a
particular augmented plant with a structure constraint on
the feedback loop. This equivalent problem has then
been reformulated as a linear objective optimization
problem under BMI constraints. Unfortunately, it cannot
be reduced to a convex optimization problem by the
usual techniques. So, the second step has consisted in
proposing an original Iterative LMI numerical method to
solve it. It seems to be both efficient and tractable. 
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