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Abstract: Fault diagnosis systems have an important role in industrial plants because
the early fault detection and isolation (FDI) can minimize damages in the plants.
The main aim of this work is to propose a two-stage neuro-fuzzy approach as a fault
diagnosis system in dynamic processes. The first stage of the system is responsible
for fault detection and is implemented using a neuro-fuzzy (N-F) model. The second
stage of the system is responsible for fault isolation and is built using an hierarchical
structure of fuzzy neural networks. The FDI system is applied to fault diagnosis in
the actuators of one sugar factory. Copyright c©2002 IFAC
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1. INTRODUCTION

Modern industrial systems are liable to numerous
faults due to their complexity. In many applica-
tions, increased requirements on productivity and
performance lead to plants operating near to the

1 This research was supported by the EU FP V Research
Training Network DAMADICS (Development and Appli-
cation of Methods for Actuator Diagnosis in Industrial
Control Systems).

design limits and therefore, faults can occur in the
components of the process or in the sensors and
actuators. So, the early detection and isolation of
faults can minimise damages in the plants and
reduce the effects of the faults in the industrial
environment. Systems that have the capability
of detect, isolate and identify faults are called a
fault diagnosis systems. These systems are very
important for the increase of safety, reliability and
availability of processes.
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Fig. 1. Fault diagnosis system.

In dynamical processes, faults may be divided
into two main classes: abrupt faults and incipient
faults. Abrupt faults give rise to jumps in the pro-
cess parameters, resulting in an appreciable devia-
tion from normal system behaviours. On the other
hand, incipient faults affect the process behaviour
slowly and may take a long time before being
detected. The fault detection and isolation of these
faults can be achieved with N-F methods, which
have the capability to use simultaneously quanti-
tative and qualitative knowledge and the ability to
represent some kind of uncertainty present in real
processes (Takagi, 2000; Yager and Filev, 1994).

It has been constructed a fault diagnosis system,
as described in the Fig. 1. This system have two
stages, the first stage is responsible for fault de-
tection and is based in the N-F models for all
subsystems considered for the fault diagnosis and
in which the faults will occur. The second stage
is responsible for fault isolation, decision making
or classification of residuals (with or without more
measurement variables depending of the process)
to determine the type, location and reasons of
the faults. This decision is described by a discrete
mapping from continuous symptom space to dis-
crete fault space. Such task is carried out by a
classifier, which determines what kind of faults are
present in the process. In this approach, the second
stage is done with an hierarchical structure of
fuzzy neural networks (HSFNN) that combines the
advantages of both fuzzy reasoning and neural net-
works (Mendes et al., 2001; Calado et al., 2001).
The proposed fault diagnosis system is applied to
fault diagnosis of sugar factory actuators valves.

The paper is organised as follows. Section 2 pro-
vides a description of the fault detection system.
Section 3 presents the description of the fault iso-
lation system. Section 4 describes the case study.
Section 5 presents the simulation of faults and the
results of this fault diagnosis system applied to the

sugar factory actuators. Finally, in Section 6 some
concluding remarks are given.

2. FAULT DETECTION

The first stage of the fault diagnosis system is the
N-F model for residuals generation.

2.1 Neuro-fuzzy modelling

The idea of model based fault detection consider
the comparison of the model output with the real
values measured from the process, thereby gener-
ating the residuals, which are the faults indicators
(Korbicz et al., 2001; Patton et al., 2000). The
proposed fault detection approach utilises the N-
F technique to implement necessary models. Two
types of the N-F networks are commonly used for
modelling purpose: Mamdani N-F network and
Takagi-Sugeno N-F network. Generally Takagi-
Sugeno N-F structures have better performance in
modelling than other structures due to their pos-
sibility to representation of the non-linear systems
by several local linear models. For this reason the
N-F networks with Takagi-Sugeno topology are
used in the proposed approach to build the models.
The structure of the Takagi-Sugeno system can be
presented in the form of a layered topology similar
to the neural networks. Such structure is shown
in Fig. 2 where the following notations are used:
x1, ..., xm+n - are the inputs, y - is the output, n

- is the number of inputs, N - is the number of
rules, Ni - is the number of fuzzy partitions for i-
th input and c, w and a are the weights. Presented
N-F network consists of five layers. The elements
of the first layer are responsible for calculation of
membership degrees of input signals. It should be
noticed that not all network inputs have to be con-
nected with the nodes in the first and fifth layer.
Some input can be connected only with the nodes
in the fifth layer. The nodes in the second layer
realize algebraic product that is used to do the
operation of aggregation in order to achieve the
firing levels of the rules. The third layer realizes
the inference operation that is commonly defined
as the algebraic product. The fifth layer express
conclusions described by the linear combinations
of the input variables. The fourth layer is respon-
sible for defuzzification of computed results and is
realized by two summation nodes and one division
node because the most commonly used method of
defuzzification is the Height Method. Three types
of weights c, w and a are tuned during the learning
process in the presented N-F network. The weights
c and w are the parameters of the Gaussian func-
tions, which express antecedents and the weights



a are the parameters of the linear functions, which
express the consequences.

2.2 System identification

Proposed fault detection scheme requires mod-
elling of the non-linear dynamic systems. The
identification process of such systems usually is
divided into two steps: structure identification and
parameters estimation. In this work the first step
consists of two phases: input variable selection and
rule base self-generation. During the first phase
the input variables and the number of input and
output lags have been selected and next it has
been decided, which input variables should be
included in the antecedent of the fuzzy rules. Dif-
ferent structures of the models has been obtained
and next compared during tests. The performance
criteria for tested structures were defined in the
form of the sum of the squared errors. Imple-
mented structures have been tested using valida-
tion data and the best has been chosen to build
the model. During the second phase clustering
algorithm called the Mountain Method has been
used to network structure self-generation (Yager
and Filev, 1994). The basic idea of such approach
is to group the input-output data into the clusters
and use one rule for each cluster. The second step
of system identification is required to estimate
the parameters of the N-F network. At first the
Fuzzy C-Mean (FCM) clustering algorithm is used
to determine the sizes of discovered clusters and
next obtained information is used to estimate the
centers and widths of membership functions by
projecting the clusters on the input variables. The
parameters of the linear consequences are initial-

å

Õ

Õ

Õ

m

m

m

m1x

n
x

n

Õ

N

Õ

å

/

Õ

Õ

Õ

å

å

å

1

å

1N

wc,

a

Nn

xm+n

L.1 L.2 L.3 L.4

L.5

m

Fig. 2. The structure of Takagi-Sugeno N-F net-
work.

ized using the ARX method and during the next
step all parameters are tuned using the backprop-
agation algorithm.

3. FAULT ISOLATION

The second stage of the fault diagnosis system of
Fig. 1 is an HSFNN for fault isolation (classifica-
tion of residuals).

3.1 Hierarchical structure of fuzzy neural networks

The HSFNN has been used to isolate (clas-
sify) multiple simultaneous faults from only sin-
gle abrupt fault symptoms (Mendes et al., 2001).
The hierarchical structure has three levels where
several fuzzy neural networks (FNNs) are used,
as shown in Fig. 3. The lower level consists of
one FNN where residuals (and also measurement
variables, if necessary to diagnose some fault that
aren’t dependent from the neuro-fuzzy model) are
used as inputs. At the medium level a number
of FNNs (structurally identical) that is equal to
the number of single fault scenarios considered,
are used. Each FNN at the medium level is also
fed with all the residuals and measurement vari-
ables, and each one is associated with an output
of the FNN at the lower level, corresponding to
a particular single fault. The upper level consists
in one fuzzy OR operation between the outputs
of the FNNs of the medium level. The elements
of the set used in the fuzzy OR operation are
determined by the outputs of the FNN at the lower
level. Thus, if the ith and jth outputs of the FNN
at the lower level is taking values greater than a
specified threshold (e.g., 0.5), then the outputs of
the ith and jth FNNs at the medium level form the
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Networks.



Fig. 4. Evaporation station from Lublin sugar factory.

elements used in the fuzzy OR operation. However,
if only one output of the FNN at the lower level is
taking a value greater than this specified thresh-
old, then the corresponding FNN in the medium
level is used to confirm that this fault is a single
fault, or to diagnose multiple faults. Obviously, the
multiple faults must include the one corresponding
to the output of the FNN at the lower level.

In contrast to the conventional multi-layer feed-
forward neural network, the adopted FNN has an
additional fuzzy input layer that maps the incre-
ment of each residuum into fuzzy sets. Therefore,
the fuzzification layer converts each input into the
quantity space, qf={decrease, steady, increase},
by association with three types of neurons. The
processing elements of the fuzzification layer re-
lated to the fuzzy sets decrease and increase use
the complement sigmoid function and the sigmoid
function, respectively, as their activation func-
tions. On the other hand, the other processing
elements of the fuzzification layer related to the
fuzzy set steady use the Gaussian function.

The membership functions used in the input fuzzy
layer have been achieved by fuzzy clustering algo-
rithm, the Gustafson-Kessel algorithm (Gustfason
and Kessel, 1979), which is implemented in the
”Fuzzy Modeling and Identification Toolbox” for
MATLAB (Babuška, 1998) and have been ad-
justed with parametric sigmoidal equations. The
hidden and output layers processing elements use
the sigmoid function as their activation functions.
Both the lower level and the medium level net-
works are made up of three layers: a fuzzification
layer, an hidden layer and an output layer. The
FNNs have been trained using the resilient back-
propagation learning algorithm (Riedmiller and
Braun, 1993).

The FNN0 is trained with single abrupt fault
symptoms and with stationary operational con-
ditions symptoms. On the other hand, the FNNi

are trained using the data for one single abrupt
fault (the fault associated with the corresponding

FNNi)) and for all possible double abrupt faults
that the FNNi net will be able to diagnose. This
training data is obtained by adding the data for
the corresponding single abrupt faults considered.
This structure is used for fault isolation for all
actuators in the industrial plant.

4. CASE STUDY

The evaporation station presented here is a part of
Lublin Sugar Factory in Poland. In Fig. 4 the first
and last sections of evaporation station are shown.
The main technological task of an evaporation
station is to thicken the beet juice being just
after the filtering and cleaning processes. This
station consists of seven evaporators grouped in
five sections (sections I, IV and V consist of one
evaporator each and sections II and III consists of
two evaporators each). The first five evaporators
work with natural juice circulation and the last
two have another construction and work with juice
circulation forced by pumps.

Two valves connected with evaporation station
have been chosen for research purposes. First one
(valve V51) situated on the inflow of thin juice into
the evaporation station and the second one (valve
V57) situated on the outlet of thick juice from the
V section of evaporation station (see Fig. 4).

5. FAULT DIAGNOSIS RESULTS

This section presents the results achieved with the
FDI system proposed.

5.1 Neuro-fuzzy models for sugar factory actuators

Two models of the valves have been implemented
using described N-F technique. Both models have
the similar structure (Table 1). They have three
inputs but only first two inputs are included in the
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Fig. 5. Performance of Takagi-Sugeno N-F model
for valve V51 (SSE / N.o of samples = 6.774).

antecedents of the fuzzy rules. The performances
of designed models have been tested using the
validation data (the performance index has been
defined in the form of the sum of the squared
errors divided by the number of samples). The
performance indexes for models of valve V51 and
V57 corresponding to the values 6.774 and 8.461.
Sample results obtained for the model of valve
V51 are shown in the Fig. 5. The residuals are
generated as a difference between the output of the
real system and the model. The normal operation
is indicated by the residuals, which values are zero
or oscillates around zero.

Table 1. The structures of the N-F
models (CV - control value, F - juice flow.)

Model Inputs N.o of
rules

Output

valve V51 [CV (k− 1), F (k− 1),

F (k − 2)]

7 F (k)

valve V57 [CV (k− 1), F (k− 1),

F (k − 2)]

9 F (k)

5.2 HSFNN for sugar factory actuators

The fault isolation subsystem is based on an
HSFNN with the characteristics previously pre-
sented (see Fig. 3). But, to construct this structure
is necessary to define the fault set and the variables
used in the input layer. Thus, two residuals have
been used as input data to all the fuzzy neural
networks. These residuals are the following: R51,
residuum from the valve V51; R57, residuum from
the valve V57. It has been considered 4 single
abrupt faults: F1, valve V51 blocked fully open;
F2, valve V51 blocked fully closed; F3, valve V57

blocked fully open and F4, valve V57 blocked fully
closed. The Fig. 6 show how this set of faults has
been simulated for training and test data construc-
tion because the files from the sugar factory (2000
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Fig. 6. Simulation of faults for both valves.

campaign) have only steady state data. There-
fore, this set of faults (abrupt faults) and also
the normal operation residuals have been used to
construct the HSFNN training data. The training
set for the FNN0 network has 4200 vectors since it
has been chosen, after some tests, that 300 vectors
for each fault set point (3 different set points)
was sufficient to represent the residuum behaviour
under faulty situation. The training set for the
FNNi network has 2700 vectors, and has been
achieved as explained before, considering that the
fault symptoms are additive.

The HSFNN implemented for fault isolation on
the sugar factory actuators is one structure where
all the FNNs are equal, with a fuzzification layer
consisting of 6 processing elements arranged in 2
groups, corresponding to the 2 residuals, with each
group containing 3 neurons corresponding to the
respective fuzzy sets. The number of neurons in
the hidden layer is determined by the complexities
of the relationships between the faults and the
fault symptoms. During the current study, it has
been found that 5 hidden processing elements
could give good performance. The output layer of
each fuzzy neural network is up of 4 neurons, each
one corresponding to a fault (see Fig. 3).

5.3 Results of fault diagnosis

The results achieved with the fault diagnosis
system are presented in tables 2-4. The results
achieved so far have shown that the system pro-
posed in this paper is a potential tool for fault
diagnosis system of single/multiple abrupt (Table
2) and incipient faults (Table 3 and 4).

In the case of single abrupt faults (Table 2), it has
been observed 100 % of correct diagnosis. In the
case of double abrupt faults the same results can
be achieved.



Table 2. Results with single abrupt faults.

Lower Medium level Upper

Faultslevel level

FNN0 FNN1 FNN2 FNN3 FNN4 OR

F1 F1=1 F1 - - - F1=1

F2 F2=1 - F2 - - F2=1

F3 F3=0.63 - - F3 - F3=1
F4 F4=0.99 - - - F4 F4=1

Tables 3 and 4 show the diagnosis results for single
and double incipient faults when the process is un-
der the incipient fault scenarios shown in the Fig.
6. The slope used in the incipient fault simulation

was slope = Residuum
Time

= 0.013 [ m3

h·samples
].

Table 3. Results with single incipient faults.

Lower Medium level Upper

Faults level level

FNN0 FNN1 FNN2 FNN3 FNN4 OR

F1 F1=0.99 F1 - - - F1=1

F2 F2=0.99 - F2 - - F2=1
F3 F3=0.99 - - F3 - F3=1

F4 F4=0.99 - - - F4 F4=1

Table 4. Results with double incipient faults.

Lower Medium level Upper
Faultslevel level

FNN0 FNN1 FNN2 FNN3 FNN4 OR

F1F3 F1=0.98 F1F3 - F1F3 - F1=1
F3=1 F3=1

F1F4 F1=0.85 F1F4 - - F1F4 F1=1
F4=0.98 F4=1

F2F3 F2=1 - F2 F2F3 - F2=1

F3=0.99 F3=1
F2F4 F2=0.99 - F2F4 - F4 F2=1

F4=0.98 F4=1

In the case of single and double incipient faults
(Table 3 and 4), it has been observed 100 %
of correct diagnosis, with this slope. As can be
seen from the Tables 3 and 4, the fault diagnosis
system can diagnose incipient fault with a smaller
slope because the diagnosis values are around 1
(F2=0.99 for example) and the threshold value in
the FNN0 network is 0.5. With different slopes
for the two valves it is possible to see some
false alarms. It has also been observed that the
neural network’s generalisation ability has a great
importance in the diagnosis of incipient faults
since the training patterns only include single
abrupt fault symptoms for a limited number of
process operating points.

6. CONCLUSIONS

This paper deals with the soft computing methods
in fault diagnosis. N-F networks and an HSFNN

were used to design and implement the two-stage
FDI system. The N-F models of actuators carry
out the detection task and the HSFNN isolate
the faults. The main advantage of the proposed
approach is that no mathematical model of the
process is required and the construction task of
the FDI system can be realized using quantitative
and qualitative knowledge. The developed system
has been successfully applied to fault diagnosis in
sugar factory actuators. It has been demonstrate
that the current fault isolation approach is able
to diagnose multiple simultaneous abrupt and in-
cipient faults from only single fault symptoms.
As it has been demonstrated this two-stage FDI
system is a suitable approach for this kind of fault
diagnosis systems.
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