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Abstract: In the paper it is shown that the pole set of a linear system can be calculated
by suitable polynomial factorizations. The theoretical issues related to poles and zeros
of time-varying systems are discussed. Further, it is shown how the poles and zeros
can be defined starting from a state-space realization of the input-output system.
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1. INTRODUCTION

The concept of poles and zeros of linear time-
varying systems is not an obvious extension to
the classical theory of time-invarian t systems. br
example, it is well known that the natural w ay
of defining poles at each time instant from the
”frozen” system matrix leads to a pole function,
from which even the stabilit y properties cannot
generally be deduced (Rugh, 1993). Another way
to define poles (or more specifically pole sets) was
used by (Kamen, 1988) who used factorizations
of operator polynomials to define the pole sets.
Based on this analysis he obtained conditions for
the stability of the system.

The method introduced by Kamen actually used
the algebra of skew polynomials, which is a natu-
ral tool in the analysis of non-commutativ e rings.
Kamen, how ever, did not formlate his results in
a tight algebraic form, but merely used simple
examples to sho wthe idea, after which he gen-
eralized it to a more general setting by using pure
calculus. Another way would be to use polynomial
methods like that described in (Blomberg and
Ylinen, 1983), and specifically in the time-varying
case b y (Ylinen, 1980).

Another approach to the problem w ouldbe to
use state-space formalism and state transforma-

tions to study the stabilit y of the system. The
w ell-knavn theory of Lyapunov transformations
(Ly apune, 1966) is a pow erfultool in this re-
spect, because this transformation is known to
preserv ethe stabilit y properties of the original
system in spite of the change of the state vari-
able. The difficulty is to find a suitable Lyapunov
transformation, which would make it possible to
analyze the stability of the original system. F or
example, (Zenger and Orava, 1996) show edthat
an y time-varying system matrix of a continuous
linear state-space representation can be changed
into a constant matrix, but the needed state trans-
formation depends on the state-transition matrix,
which is generally impossible to solve analytically.
Hence it is not possible to know, whether the
transformation is a Lyapunov transformation or
not. The topic has been elaborated more exten-
sively e.g. in (Harris and Miles, 1980).

In this paper the main focus is in continuous
time linear systems following the ideas of (Kamen,
1988) and (O’Brien and Iglesias, 1998). It is shown
that the factorization by Kamen to obtain the
poles is only one special case from a more general
approach, in which all Lyapunov transformations
can be used to define the pole sets. The current
w ork inspired by the papers of (O’Brien and
Iglesias, 1998) and (Kamen, 1988) and is thusa



natural extension to previous results; however it
uses the state-space formalism instead of input-
output representations.

2. POLES AND ZEROS OF
TIME-INVARIANT SYSTEMS

Consider a time-invariant SISO input-output dif-
ferential system

With input v € X and output y € X it can be
described as

a(p)y = b(p)u (2)

where a(p) and b(p) are polynomials over the
complex field C in the differential operator p on a
suitable signal space X. In multivariable (MIMO)
case the corresponding input-output description is

A(p)y = B(p)u (3)

where A(p) and B(p) are polynomial matrices
with det A(p) # 0 (Blomberg and Ylinen, 1983).
Obviously, the system

S ={(u,y)|A(p)y = B(p)u}
= (ker[A(p) | - B(p)]) ™" (4)

is uniquely determined by the generator

[A(p) | — B(p)].- On the other hand, there can
be infinitely many generators [A(p) | — B(p)] for
the same system. Two generators determine the
same system if and only if they are row equiv-
alent as polynomial matrices i.e. they can be ob-
tained from each other by premultiplication with a
unimodular matriz,(Blomberg and Ylinen, 1983).
Furthermore, the generators of some canonical
form (e.g.Canonical Upper Triangular Form) for
the row equivalence are unique descriptions of the
system, (Blomberg and Ylinen, 1983)

The system can also be decomposed to a state
space description
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Conversely, the input-output description
[A(p) | — B(p)] can be obtained from the state

space description by bringing the equations (5) to
a row equivalent upper triangular form

) -(g)e o

by elementary row operations. The state space
description is completely observable if A;(p) is
unimodular.

Consider the input-output description
A(p)y = B(p)u, det A(p) #0 (8)

and suppose that the input u is of the form

u(t) = uge™ (9)

where ug is a constant vector and A € C . Suppose
that the output y is of the same form

y(t) = yoe™ (10)

Then

AN)yoer = B(\)uge (11)

Because e # 0 for all t € R, it can be cancelled
so that

ANy = B\uo (12)

If det A(A\) # 0 then yo can be solved

yo = AN B(\uo (13)

Suppose now that A € C is such that

rankB(A) < rankB(p) (14)

Then there exist ug # 0 and yo = 0 satisfying
(12). This kind of X is a zero of the system and
u(t) = wupe is the corresponding input mode.
Note that the premultiplication of a matrix by
a unimodular matrix does not change the rank so
that zeros are not depending on the description.

On the other hand, if

rankA(\) < rankA(p) <= det A(X) =0 (15)

then there exist up = 0 and yo # 0 satisfying (12),
i.e. the equation (2) has nonzero solutions yg, even
though up = 0. Then A is a pole of the system and
y(t) = yoe* is the corresponding output mode.

In the SISO case (2) the poles and zeros are simply
the zeros (roots) of the polynomial functions A —
a(N), A b(A), respectively.

Suppose that the system ( 3) has n = deg(det A(p))
distinct poles A1, Az, ..., A, with corresponding so-



lutions yo1, Y02, ---, Yon. Then an arbitrary solution
y of equation A(p)y =0 can be written as

n
y(t) = Zci?JOie}\it (16)
i=1

Thus the system is asymptotically stable if and
only if the poles are located in the open left half-
plane of the complex plane. The case of multiple
poles is more complicated and is omitted here.

Consider next the state space description (5).
According to the MIMO case above, the poles and
zeros can be obtained from
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The (internal) poles of the state space description
are the solutions of

det(\M — A) =0 (18)

i.e. the eigenvalues of A. It is interesting to note
that the state space description does not have
zeros at all. From the equivalent equation

404 [5]- 58] o

it is seen that the poles of the system are also poles
of the state space description but the converse is
not generally true because the poles obtained from

det(4,(\) = 0 (20)

are not poles of the system. Instead, they are
related to the unobservable modes of the state
space description.

3. TIME-VARYING LINEAR SYSTEMS

The time-varying differential systems can be de-
scribed by the same kind of models than the time-
invariant ones but the models are mathematically
more complicated. In the SISO case the models
are of the form

a(p)y = b(p)u (21)

where u,y € X are input and output signals of the
system, p is the differential operator on X , and
a(p),b(p) are polynomials in p with coefficients
from a suitable space K of complex-valued in-
finitely differentiable functions. The existence and
uniqueness of the solutions as well as the realiz-
ability of the models are difficult mathematical
questions depending on the signal and coefficient
spaces but they are not considered in this paper.

Now the multiplication of arbitrary polynomials
defined by composition of operators is no more

commutative but is constructed using the prop-
erty

da
= + — 22
pa = ap 7 (22)

This is an example of multiplication of skew poly-
nomials. An other example is the discrete time
case where the unit prediction operator q satisfies

qa = (qra)q (23)

where qgis the unit prediction operator in the
space of coefficients (Ylinen 1980, Kamen 1988).

The algebraic structure of skew polynomials is a
noncommutative ring with coefficient space K as
a subring. Most of the concepts and properties of
ordinary polynomials can be applied to skew poly-
nomials. However, for stronger structures the coef-
ficient ring K should be a field which is difficult to
satisfy in the time-varying case without extension
of coefficients and signals to corresponding frac-
tions with nonzero coefficients as denominators.

In particular, this holds for the division algo-
rithms. For instance, the left division algorithm

a(p) =b(p)q(p) +r(p)
deg(r(p)) < deg(b(p)) (24)

is satisfied for all a(p),b(p) # 0 only if the coefhi-
cient ring K is a field. This is important because
the division algorithm is needed for manipulation
of skew polynomial matrices used in descriptions
of multivariable systems.

4. POLES AND ZEROS OF TIME-VARYING
SYSTEMS

Analogously to the time-invariant case, the modes
and poles are defined by means of solutions of first
order differential equations
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where yois a constant.

Putting the mode to the equation a(p)y = 0 leads
to

) ¢
[ Ayat [ Atyat
a(p)yoe® =a®(\)eo (26)

where X = a(p)®(A\)=a®()) is a skew polynomial
function K — K associated with a(p). The skew
polynomial functions have the following proper-
ties



(a0)%(X) =ao (27)

(0)°(AN) = A (28)

(a(p) +b(p))° (V) =a®(\) +b°(\)  (29)
(a(@)b(p))*(A) = (a(p)b(X))*(X)  (30)

Now the poles (pole functions) can be solved from

a®(\) =0 (31)

This is a nonlinear differential equation of order
(n — 1) and the existence of its solutions depends
on the chosen coefficient ring and initial values.

Using the right division algorithm of skew poly-

nomials it can be proven:

Proposition 1. a®()\) = 0 if and only if (p — \) is
a right factor of a(p).

Proof 1. According to the division algorithm a(p)
can be presented in the form

a(p) = q(p)(p — A) + r(p) deg(r(p))
<deg(p—A) =1 (32)

i.e. r(p) = ro. Furthermore

a®(N) = (a(p)(p — X)) (V) +r5(N)
= (@(P)(A = A)°(N) + 7o = 1o

This means that all modes are related to linear
right factors.

The zeros and the input modes of the SISO system
(21) can be defined analogously, i.e. the zeros are
the roots of

bS(\) =0 (33)

The extension to multivariable systems needs
some more sophisticated tools for manipulation
of skew polynomial matrices.

Consider first the system described by
A(p)y = B(p)u (34)

where A(p), B(p) are skew polynomial matrices
with full column rank and A(p) square. The out-
put modes

j" At)dt
y(t) = yoe° (35)

where yo ’s are constant vectors, satisfy the equa-
tion

AS(N)yo =0 (36)

where A%()) is defined in the obvious way. Now
the problem is to find a A and a yo # 0 such that
for all t

ATV (t)yo =0 (37)
Note that only in few special cases (e.g. if A(p) is

diagonal) A can be obtained from det A% ()\)(t) =
0.

Consider next the model
P(p)A(p)y = P(p)B(p)u (38)

equivalent to ( 34), where P(p) is a unimodular
skew polynomial matrix. Then

(P(p)A(p))® (Nyo = (P(p)A%(N)® (Mo
= (P(p)A® (Nyo)®(A)
=0 (39)

Thus the modes and poles are independent of
descriptions.

In terms of the state-space realizations consider
pl —A() 0| [z| |B
{ —cwy I|ly|=|p|* @O

where A, B,C,D are matrices over K of time-
varying coefficients. Now the (internal) modes
satisfy for all ¢

[PI_—CA ?r@)(t) B’g]

= [A(t)_IC_A H [;’2] =0 (41)

i.e. the poles of the state space description are
such pointwise eigenvalues for which there exist
constant eigenvectors xoy with C(t)zy constant.
Furthermore, only those eigenvalues satisfying
C(t)ro = constant # 0 are also poles of the
system.

Suppose that the model ( 40) can be brought to
upper triangular form
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by elementary row operations (note that the left
division algorithm is needed). Further, assume
that A is a pole of the system generated by ( 34)
i.e. it holds that A%(\)yo = 0 with yo # 0. Then
A is also a pole of the state space description only
if the equation

AT (Nzo 4+ A5 Ny =0 (43)

has a non-zero constant solution xy. That means
that in the time-varying case there are state-space



descriptions the poles of which are different from
the poles of the system even in the observable case,
where A, (p) can be taken equal to I. The problem
is to find such state-space descriptions, which have
the same poles as the system itself. This question
is discussed in the next section.

5. STATE REPRESENTATIONS AND
POLYNOMIAL FACTORIZATIONS

Consider a SISO input-output differential system

ZWWﬁ@zwaﬁP (44)

=0

where it is assumed that for all time instants
an(t) = 1 and the functions a;(-) and b;(-) are
differentiable at least n — 1 times. The system has
the realization (Wiberg, 1971)

&(t) = A(t)z(t) + B(t)u(t),

z(to) = o
y(t) = C(t)z(t) + D(t)u(t) (45)

with
0 1 0 - 0
0 0 1 0
A1) = z
0 0 0 1
—ao(t) —al(t) . —an,l(t)
24
Y2 (t
B=| .
Y (t)
Ct)y=[10---0] D(t) =(t)
and
Yo t) = bn(t)a
%’(}t = bn—z(t)
_271 i—k (’I'I,+j_7/ |a e ()d]’)/k(t)
- n—itk+j .
== jl(n —i)! dti
(:1=1,2,---,n). The transformation

(t) = P(t)s(t) (46)

where P(-) is an invertible square matrix changes
the system representation ( 45) into the form

§(t) = E(t)s(t) + F(tu(t)

u(t) = G)s(t) + Htyu(ty 40
(s(to) = P~1(tp)zo) where
B(t) = P (0)[AW0P(t) — P(1)]
F(t) =P '(t)B(t) (48)
G(t) = C()P(1)
H(t) = D(¢)

sa(t) ylt=s:(t)

”mll+| ;
b(t) ' 1fs 1fs
+ +

Fig. 1. Realization by the pole set

It is easy to show, (Zenger and Orava, 1996), that
the matrix E(+) of the target system can be chosen
arbitrarily by choosing

P(t) = ®a(t,to) P(to) @5 (t,t0)  (49)
where ®4(-,-), ®g(-,-) are the state transition
matrices related to A(-) and E(-), respectively.

To proceed, consider first the two-dimensional
system

§(t) + ar(D)y(t) + ao(t)y(t) = b(t)u(t) (50)

which has a realization of the form ( 45)

0 1 0
C(t)y=[10], D(t)=0

Let us try to find a realization corresponding to
the system structure in Fig. 1. Then the system
matrix of the target representation will have the
form

E@={%@p@ﬂ 52)

and the transformation matrix P can be calcu-
lated from

P(t) = A(t)P(t) — P(t)E(t) (53)

If the elements of the matrix are denoted as p;;,
the equations become

Di1 = P21 — P11D2

D12 = P22 — P11 — P12P1 (54)
D21 = —QoP11 — A1P21 — P21D2
D22 = —QgP12 — A1P22 — P21 — P22

(The notation of time ¢ has been deleted in the
previous equation to save space.) The equations
have a solution

R
leading to
_ [ p(t) 1 _[o
EO=\"0" oo | F“)—{baﬂ (56)
Gt)=[10], H()=0




where

D2(t) = pa(t)
Pu(t) = —pa(t) — (1) (57)

N
I

and
—p5(t) — ao(t) — ai(t)pa(t) — pa(t) = 0 (58)

using an arbitrary initial condition.

The system structure in Fig. 1 is seen to be
analogous to that used in (Kamen, 1988). It
corresponds to the polynomial factorization

[P + a1 (8)p + ao ()] (1)
N O e X0 O

where p»(t) is the right pole of the system. It is
interesting to note that if ps(¢) is a bounded func-
tion, P(t) is a Lyapunov transformation, which
is known to preserve the stability properties of
the original and transformed systems, (Lyapunov,
1966), (Harris and Miles, 1980).

The concept of ‘right pole’ is analogous to the
theory presented in the previous section, because
it has a direct correspondence to the mode of the
system. However, the pole p;, does not have this
property, and the definitions differ in this respect.
It is interesting to note that in (Kamen, 1988) two
different right poles are used to study the stability
of the system. This means the determination of
p2(t) with two different initial conditions.

Note that it is also possible to use a transforma-
tion that leads to a diagonal matrix FE(t). The
the main diagonal elements corresponds to the
modes of the system as described earlier. The
transformation can then be written by a gener-
alized Vandermonde matrix (Kamen, 1988). A
similar approach has been used in (O’Brien and
Iglesias, 1998), where it is further required that
the state transformation matrix is a Lyapunov
transformation. However, that is not an easy con-
dition to meet in this case.

The above idea can be extended to the n-
dimensional case as follows. If the transformation
matrix P is chosen to have the form of a lower
triangular matrix as follows

1 0 0 0
Pu(t) 1 0 0

P(t) = | @s1(t) pna(t) 1 01 (60)
£ (t) 2aa(t) - palt) 1

the system matrix E in the target representation
becomes

Pn 1 0
® —pn+pp-1 1 0

E(t) = T . (61)
[ ] [ ] : :
L4 L ® —D2— D1

with p; = a,_1 and the positions marked with
a bullet represent suitable differential equations,
which are functions of the terms x;;(¢t) and p;(t)
(compare to the equation ( 58)). Setting these
equal to zero the ‘poles’ in the main diagonal
can be calculated. The terms correspond to the
factorization of the pole polynomial. Formally, the
zeros can be calculated in a similar manner by
setting the coefficients b;(¢) in a fictitious system
matrix.

6. CONCLUSION

The concept of poles and zeros of time-varying
linear differential systems has been discussed in
the paper. By using the modes of the system
representation the poles and zeros have been de-
fined in a natural way, which is shown to lead to
a polynomial factorization of the pole and zero
polynomials. The relations to previous work has
been discussed, and a new way to define or calcu-
late the poles and zeros starting from a canonical
state-space representation of the system has been
presented.
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