Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

ON SLIDING-MODE BASED CONTROL VIA
CONE-SHAPED BOUNDARY LAYERS

Guido Herrmann,' Sarah K. Spurgeon, Christopher Edwards

Control & Instrumentation Research Group
Department of Engineering
University of Leicester, LE1 7TRH, U.K.
e-mail: gh17@sun.engg.le.ac.uk, eon@le.ac.uk, ce1/@le.ac.uk
Tel: +44-116-252-25381,F ax.: +44-116-252-2619

Abstract: This paper presents a non-linear multi-input control law using sliding mode
concepts for continuous-time, uncertain systems. The control law introduces a cone-
shaped lay er around the sliding mode plane to remave chattering. This layer combines
two types of boundary layers; a constant layer and a sector-shaped layer. The states
will always enter the cone-shaped boundary layer and the dhoice of the sliding mode
will be seen to determine the ultimate system performance. A numerical example is
used to illustrate the results. Copyright (©2002 IFA C

Keywords: sliding-mode control, boundary layer, robust control, Lyapunov analysis

1. INTRODUCTION

Research on non-linear sliding mode control has
been very extensive due to its inherent robust-
ness and performance features. By forcing the
system states onto a pre-defined stable mode,
the sliding mode, it is possible to reject matched
disturbances and to achiev eperformance levels
wholly determined by the choice of the sliding
mode. How eer, a disadvantage of practical im-
plementation of sliding mode control can be the
chattering of the con trolsignal when the states
reac h the vicinit yof the sliding mode. Different
techniques have been introduced to prevent chat-
tering. A common approach is the introduction of
a constant layer around the sliding mode plane by
smoothing the discontinuous control law in some
w ay[16; 1; 4; 15]. Alternatively, the application
of an observer and the subsequent introduction
of a sliding-mode for the observer states [19; 23]
can remove chattering of the control. Approaches
employing additional dynamics ha vealso been
introduced [2; 12; 13] so that the con trollerdis-
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continuity appears only in higher order derivativ es
of the control signal. In practical applications,
both higher order sliding and smoothing of the
con trolvia a sliding mode layer, pro vide similar
robustness and performance levels [20].

Different layer shapes ha vebeen discussed in
the literature such as the introductioof sectors
[6; 7; 22], constant boundary layers [1; 4; 15]
and dynamically changing layers [17]. How eer,
these approaches have not been formally analyzed
for a generic class of multi-input, con timous-
time systems with a unit-vector control approach.
Sector-shaped boundary layers ha vebeen found
useful for robust rejection of matched paramet-
ric uncertainty [10]. In particular, sector shaped
layers have been widely used for discrete vari-
able structure con trol [9; 14; 21] where con-
trol laws are implemented by switc hing along
the boundary of the sector layer and not along
the sliding mode plane. Recently, a con tinious-
time switched, non-Lipschitz, single-input state-
feedback con trolhas been suggested by Furuta
and Pan [10] for continuous-time single input sys-
tems with boundegdarametric uncertain ty. This
con trol la w alsokanges structure along the sector
boundary, forcing the states tow ardsthe sector



lay er wherein the behaviour is chosen to be stable.
Furuta and P an[10, Remark 16] observed that
this type of switched control law can result in
chattering of the con trolin certain cases. This
paper considers the idea of a cone-shaped layer
for the unit-vector based control as a smoothing
technique. A constant term in the denominator of
the unit-vector-based control [18] is modified to be
a linear function of the norm of the system states;
a combination of a sector and a constant boundary
layer is employed. A tw o step approah similar to
[Ryan and Corless, 15; Spurgeon and Davies, 18]
can be used to show ultimate boundedness.

2. THE CONSIDERED CLASS OF SYSTEMS
Consider

%X =Ax+ Bu+F(t,x) + G(t,x,u)u (1)
where x € R”, u € R™ and the known matrix pair
(A, B) is assumed to be controllable with B of full
rank. The unknown functions F and G represent
uncertainties, non-linearitieand disturbances in
the system. The uncertainty representation F +
Gu belongs to a class of functions, F, con taining
unmatched uncertainty. Thus for each (F+ Gu) €
F, the matched and unmatched uncertainty and
disturbance components can be decomposed as

F(t,x) = Fi(t, x)x + Fa(t,x) + G2(t, %),

F; :RxR" - R"™" Fy:RxR" = (Z(B))*,

G:RxR" xR™ - ZI(B), G2 :RxR" - ZI(B) (2)
where Z(B) is the range space of the input matrix
B defining the space of the matched uncertainty.
The operation (-)* refers to the orthogonal com-
plement of (). The uncertainty has w elldefined
bounds such that

||F1(t,X)|| < KF17 ||F2(t,X)|| < KFz:

||G(t,X,ll)|| < Kg, ||G2(t,X)|| < KGz:
where Kf,, Kr,, Kg and Kg, are kno wncon-
stan ts. The usual Caratheodory assumptions [5]
are made for F to ensure existence of solution.
Consider, as in Spurgeon and Davies [18], a linear
transformation 7' to design the sliding-mode:

z:Tx:{Zl], (4)

¢
where
I"’B—[O } G = ],T(F2+G2):F2],
By 1 Go
PRt = |20 2 et o EA”],()
AG AQ X}

Q, AQ, G, € RmX™m Gy € R™, B, € Rmxm
is non-singular and ¥ is a Hurwitz-stable design
matrix. The transformed system can be written:

Z1 = izl -+ A~12¢+ FQ, (6)

¢=(0+20)z; +(Q+A2) ¢+ (By + G1) u+ Ga(7)

where
s w4 AZ, A Ay + Ay (8)

3. THE NON-LINEAR CONTROL LAW

The continuous control law has tw o parts:

u(t) = u (21 (2), 6(t)) + unr(z1(t), 4(t)) (9)
where uy(-) and uyp(-) are the linear and the
non-linear con trol components. The non-linear
con trol componert

def By 'Pso
uvs(t) = —p(z1, 9) trgra fararerse (10)
where ¢, 61,05 € RT, 65 >0, P, € R™*™  achieves
robustness by counteracting the matched uncer-
tainties. The linear part is defined as:

def _ *
ur(-) = =B, (071 (1) +(2 — Q%)g(1)) , (11)
where * is a Hurwitz-stable design matrix and
the positive definite matrix P, satisfies

PO+ QTP =—1,. (12)

A Lyapunov function V2(¢(t)) for the analysis of
the range-space dynamics of (7) is given b y

def 1

Va(6(t) = 567 (1) Pag(t), (13)
and a Lyapunov function Vi(z(t)) for the null-
space dynamics in (6) is

Vit ) Y LaTOPm@, ()

where the symmetric positive definite matrix P, €
R(n—m)x(n=m) gatisfies

PY 43P =1 - (15)

The expression 61||z1|| + 02 ||¢|| + d3¢ has been
introduced into the denominator of (10) to pre-
vert chattering. This way of suppressing chatter-
ing contrasts the constant boundary around the
sliding mode [1; 4; 18]. The component is notof
constant value but it decreases with ||z, (t)|| and
||| This results in a cone shaped layer. Formally,
the layer is defined by the set:

S={z : Va(9) - w*Vi(m) < e} (1)

2
where w € R* is a small, positive design de-
pendent constant. This approach is different to
Furuta and Pan [10]. The set S of (16) combines
both the constant boundary layer with the sector
boundary layer. It will be proved that S (16) will
be ultimately entered. The constant ¢ also ensures
the non-linear control component is non-singular.
The parameter w is not dependent on the design
parameter c¢. The constant w is

2 3
L, def _ Wn +\/< W > N 81 Amin (Ps )(17)

2 Wy 2 Wy Wy

where

N=
N=

Wy déf? S Amin(Pl ) |:(Amin(P2 ))2(’7; _1) _(62 +63) )



1 12
Wn d;f )\min(PIE) |:(/\min(P2§)) (71 - 1) - (62 + 53)

1
—ZSAmin(P; )d1, (18)

The scalar w can be adjusted by the con trol
parameters s € R", §1...03 and 41 > v, > 1. The
constant w has to be positive. This can be assured
by the constrairt

d2 + d3

(Ami”(Pf)Y e

which guarantees that wy remains positive. Gen-
erally, choosing w larger minimizes chattering.
The function p(z;(t), #(t)) is defined as:

def 71 ()

Q] T(m 1P29 + (n2 + n3)lZ1]] + (n4 + n5))(20)

(19)

where 71...n5 > 0. The constant value o

o inf </\mm[1m + &32—1 + (B;I)TG—ITO > 0,(21)
& 2 2

is well kno wnfrom Spurgeon and Davies [18]

and has been introduced to cope with the input

distribution matrix uncertainty Gy by requiring

implicitly a bound ¢ > 0 for G;. The multi-

plicative non-linear controller part v;(-) > 1 has

previously been constant. Controller performance

[18] is largely governed by the ¢ hoice of the sliding
mode poles. How eer, these dynamics are only

achiev ed when all the states emer the vicinity of
the sliding mogkane. Here, this is the la  yer of
(16). The reaching time can involw high con trol
effort due to the possibly high gain nature of the

non-linear con trol component. High initial con-

troller peaks can be decreased by varying dynami-

cally the gain 5 (Vi (z1(¢)), Va(é(t))) bet ween tw o
limit values

1 > % (V2 (1), V2(6(0)) > 71 > 1.

The initial peak of the control can be decreased by
choosing a small value for 75 (V1 (z1(t)), Va(¢(t)))
aw ayfrom the cone shaped sliding mode layer,
i.e. for large values of Va(p(t)) >> w?Vi(zy(t)).
The reaching of the cone shaped layer can be
assured by gradually increasing the value of
¥ (Vi(z1(t)), Va(é(t))) the nearer the states come
to the sliding plane layer:

(11 = 1)VVE
\m+4ﬁ@wmm§m@

The rate of increase can be chosen with the
positive value of s. The smaller s the higher will
be the rate of increase. The gains 1;, 172 and ny
in (20) have been defined so that they ensure
ultimate reac hing of the cone shaped boundary
layer (16) and robustness with respect to the
matched disturbances:

1
mdéfmax sup (—/\mm{P;lTTJrTP;l}),o (23)
GLA0N2
1

« def 7
M o=mnt

. (22)

T (1 ys) @+ A0 - Gy By - Q) (24)

d. = —
" sup (||ae-GiB;lel)) (25)
NO,G;
def  infanAmin(PIS+2TP)) -1 1
n = W — 1Py 211112y 2l
+w? sup (||[PLALPy ), (26)
AAqn
def =
na = sup (/|G| (27)
Go
def 1. _1
ms " w sup (1P R 1251 (28)
Fa

where 1 > v3; 73 € R*. The stabilizing linear
con troluy, (z (), #(t)) enhances the reac hability
of the cone shaped layer and provides robustness
with respect to the parametric uncertainty AQ
and some components of the input distribution
matrix uncertainty Gi. A compromise betw een
the two control components can be made by ad-
justing the parameter 1 > y3 > 0. Linear control
will be solely used for achieving reachability of
the cone shaped layer when~ys = 1. The controller
gain 77 (23) is high enough to tackle the respective
matched uncertainty. The smaller the dhoice of s,
the more the linear control is utilized to ensure
robustness. The gain 7; decreases when choosing
v3 < 1. How ever, the duration of the reahing time
of the cone shaped layer will be extended.

4. STABILITY AND PERFORMANCE

Stability and sliding mode based performance
can be shown in a w ell-knavn tw ostep analysis
approach [Ryan and Corless, 15; Spurgeon and
Davies, 18]. The ultimate reac hing of the sliding
mode layer of (16) is pro ed first and then sta-
ble behaviour and exponentially fast decay of the
states outside a set of ultimate boundedness. This
is done by formulating quadratic Lyapunov stabil-
ity constraints and imposing an implicit bound on
the uncertainty AX:

Amae(PLE +35TP) <0 (29)

Under this condition, it is possible to design
w small enough, so that there is for a positive
constant ¢

_ 1. _ 1 1. 1
0 << —Amaz(PEEP % + P, 2YTP?)(30)
a scalar 5‘;312 = inf(§) > 0, which is the mi{limal
value satisfying the matrix inequality for all ¥ and
Alzi

1. _1 1. 1 _ 1 _ _1
P2YP; 24+ P 25T P2 4-9I+€ wP?A1P, *

1 1

B <0.(31)
wh 2A7,Py =&

The existence of the scalar £22  implies stability

$A
of the control once the slidi1112g mode layer of
(16) is reached. This constraint, a consequence
of the S-procedure [3, Section 2.6.3], follows from
a stability analysis detailed within the proof of

Theorem 1.



The parameter values of 4;...03, s, 71 and -

defining w ha ve to be carefully selected to ensure

the existence of g}gw. The value of g}gw also
indirectly determines the size of the set of ultimate
boundedness. The set R of ultimate boundedness
depends also on the choice of w and ¢. The larger
w or ¢, the larger the set of ultimate bounded-
ness. Note that an unmatched disturbance ﬁg of
constant bound increases the set R of ultimate
boundedness:

ﬁdgf {i :
where € > 0

2
1 _ 1 . H
def P2 Fs|| | P2 Fs|? Cz/\m”(PQ)gglglm
v = su —+ = + .
o V209 20

2 .
Vi<v+e, Vo< %E(PZ)‘FWZ(V+E)} (32)

Note for F» = 0, ¢ — 0 and for ¢ — 0, the set R
is the singleton {0}.

Theorem 1. It can be sho wn that with ¥ > 0,
o > 0 and by the assumption (19) for the system
(6-7) using a control law as given in (9-11):

I. The function

frive = Va((1) — W Vi (21 (1)) (33)

will become ultimately smaller than (M

after a finite duration of time, implying sliding-
mode-b asel performance. The time needed is
bounded above by:

T(fVl Va2 (to)) =

Amaz (P2) 2fV1,V2 (tO)
In
Y3 C2Amaz (P2)

) @0

A Amae (Po)
V fuivs(to) > =g
II. The system is globally ultimately bounded by
the set R(g), € > 0. ¢

Prof See Herrmann [11].

5. AN ILLUSTRATIVE EXAMPLE
Consider the cart-pendulum system [8, pp. 85]

(M +m)i + mi (fcos(0) — 0%sin(0)) = u1 +d (35)
m (x cos(0) + 16 — gsin(ﬂ)) =u2 +d> (36)

which is formed by a cart of mass M, a light rod

of length [ and a heavy mass m attached to one
end of the rod with the piv otof rotation at the
other end of the rod fixed to the center of the cart.
The quantities  and 6 represent the position of
the cart and the angle of the rod from the vertical.
The two control signals are a horizontal force u;
on the cart and a torque us at the pivot of the
rod. A matched disturbance is introduced acting
in both actuator channels

dy = 0.2sin (2), d2 = 0.2 cos(f) sin(2t).
A linearized model at [# 6 z #] = [0 0 0 0] is:

0 1 00
0 M 0
: gM+m) oo
_ IM o1,
T —mg mlo 0ol LE
A
0 0
-1 (M +m)
IM mIM || v td
0 uz + da (37)
1 —cos(f)
M M
—_——

The parameter choice of M = 0.455kg, m =
0.21kg, I = 0.305m and g = 9.81 is from the
Matlab/Simulink (Mathworks, Inc.) example of
a cart-pendulum system. The non-linearities are
not sector bounded due to the cen trifugal force.
Hence, the non-linearities are assessed for the
limited range |0| < 157%¢_ Further, the value of
o > 01is assured to remain positive only for limited
angular displacement 6 of the rod. The value of
o > 01is 0.323 for |f] < Zrad employing the

4
following choice for the linear control elements:

—-0.70 . [-25-25
= 3" Yor] =[5 57

where 2* has been optimized to decrease initial
con trollerpeaks while achieving fast reaching of
the boundary layer. All non-linearities considered
within |0| < Frad and 9] < 15224 can be re-
garded as parametric uncertainty and from Fy =
0, [|Gz|| = 0.2 (2) follows ny = 0.2 (27) and 15 = 0
(28). It has been preferred here to replace the term

mllml= sw (a6 -GiBs'0|) l)3s)
AO,G
with

o (H(AG) ~G.B;'0)., H) ||

+ sup. (H(AG) - GIB;@),JH) 16](39)

using z7' =[x — 6] to decrease the magnitude
of the con trolu; and wus. Forcomputation of n;
(23), the value of v3 (24) has been set to 0.2.
The cone-shaped layer (16) has been adjusted via
>y >1,86>0and d=0:v =18, 7] =
1.1, s = 50, § = 0.0045, 63 = 0.0009, ¢ =
1 = w = 0.0469 so that the condition for
the matrix inequality of (31) and stable sliding-
mode based behaviour is satisfied. This implies
n3 = 0.077 and for p (10,20):

— 'Yik(‘/hVZ)

G353 (165]1Pagll + 0.57]a]

+5.99]8] + 0.077 ||z, ]| + 0.2) (40)



Simulations using Matlab/Simulink show that the
controller stabilizes the system in a wide area
of operation (Figure 1) without chattering. The
controller has been implemented using a sampling
frequency of 130H z while the numerical step of
the simulation was smaller than 1/1300sec em-
ploying ambsolute and relativ e accuracy diss

than 1-107%. Note that a decrease in d3¢ w ould
cause chattering due to the constant gain 74. The
effectiveness of the control can be shown in com-
parison to a sliding-mode with constant boundary
for which the respective non-linear control u§;; is:

By'Ps¢

c Y
=1 72 2% 765||P
UNL 0.323||P2¢>||+6( P2l

+0.57|z| + 5.99/6] + 0.2)

Note that the term 0.077||z1|| from p of (40) is
omitted for uf;; as it is specific to the control with
cone-shaped boundary layer (26). The values of
v = 1.3 and § = 0.22 have been adjusted so that
the sliding-mode reaching dynamics of ¢ are com-
parable to those of the control with cone shaped
boundary layer while preven ting ¢ hattering (Fig-
ure 3). For both con trollers, the values of the
sliding function ¢ settle to v alues close to 0 within
less than 0.5sec (Figure 2) so that sliding-mode-
like motion is quidkly attained without chattering.
The control with cone-shaped boundary layer can
cope with matched disturbances better than the
conv en tional sliding-mode conirol (Figure 4). This
is also confirmed for other values of v and 9

[y, 8] = [1.1, 0.1], [y, 6] = [1.4, 0.14]

Note that tests for all the Matlab/Simulink-
integration procedures, Dormand-Price, NDF etc,
gave the same simulation results.

6. CONCLUSIONS

The well-known unit-vector control used for sliding-
mode control has been modified so that a cone-
shaped boundary layer around the sliding-mode
follows, combining both sector boundary lay er and
constant boundary layer. The class of uncertainty
considered is bounded input uncertainty, bounded
parametric uncertainty and constant bounded dis-
turbances. Provided the parametric uncertainties
and disturbances are matched, then the proposed
control can counteract them and there is no limi-
tation given for the bounds of these disturbances.
The bounds for un-matched parametric uncer-
tainty and input-uncertainty are implicitly given.
The un-matched parametric uncertainty is con-
strained by the sliding-mode-based dynamics.
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