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Abstract: The full horizon observer is a stochastic nonlinear observer that does not
require any parameter tuning and whose optimal feature results directly from the
identification cost function of the initial conditions. The efficiency of this observer is,
however, strongly dependent on the model quality. On the other hand, the asymptotic
observer does not require a kinetic model. However, its convergence is function of the
experimental conditions. The aim of this study is to build a hybrid observer which
allows to jointly estimate the state and identify on-line the confidence in the kinetic
model. Simulations of fed-batch bacterial cultures show very satisfactory results.
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1. INTRODUCTION

Bioprocess knowledge, monitoring and control are
key elements to insure optimal working and prod-
uct quality. As the process becomes more complex
(reactor design, biocatalysts, products...) more
information over the dynamic of the main con-
stituents are required. If sensors for some process
variables are well established (dissolved oxygen,
pH, temperature...) some do not exist or involve
several problems (particularly for biological state
variables) : they are not sterilizable, they require
discrete and rare samples and provide measure-
ments sometimes with a long time of analysis, the
sensors and their maintenance are very expensive
and finally they can degrade the hydrodynamics
properties of complex bioreactors. These prob-
lems lead to consider the software sensors which
combine available hardware sensors signals and
a mathematical model in order to provide on-
line measurements estimates in continuous time.
The estimation algorithm that provides an on-line
state estimate converging towards the true state
of the process is called a state observer.

Several estimation techniques dealing with the
non-linear models involved in bioprocesses have
been proposed in the literature. Applying these
techniques to bioprocess currently highlights the
major advantages and drawbacks of these state
observers. On one hand, exponential observers like
extended Kalman filters or full horizon observers
(Bogaerts and Hanus, 2001) are strongly depen-
dent on the model quality. On the other hand the
asymptotic observer (Bastin and Dochain, 1990)
does not require any knowledge of the kinetic
model which is most of time badly known. How-
ever the rate of convergence of this state observer
is completel y determined by the experimental con-
ditions (namely the dilution rate). This may lead
to very slow convergence in the case of low dilution
rate, and the observer does not converge at all in
the case of batch cultures.

Several solutions have been proposed in order to
overcome these problems of convergence or de-
pendency on model quality. In the usual trade-off
solutions, either the model identification is added
to the state estimation problem (Dubach and
Miérkl, 1992)(Ghoul et al., 1991), or the known



part of the model is fixed a priori (Pelletier,
1995). Another trade-off solution is to fix the
model structure parameters and to consider the
model quality by introducing a confidence param-
eter. This latter solutions has lead to the hy-
brid observers. The asymptotic-Kalman observer
(Bogaerts, 1999) and the hybrid observer pro-
posed by (Lemesle and Gouzé, 2001) evolves be-
tween two limit cases, the extended Kalman fil-
ter, respectively the high gain observer, and the
asymptotic observer of Bastin and Dochain ac-
cording to this confidence parameter (evaluated
on-line in the first hybrid observer and a priori
fixed in the second one). In this paper a hybrid
full horizon-asymptotic which follows the same
concept of the asymptotic-Kalman observer is pro-
posed. The continuous variation of the confidence
parameters results in a continuous variation of the
hybrid observer structure, the two limit cases be-
ing (rigorously) the full horizon (100% confidence)
and asymptotic (0% confidence) observers.

This paper is organized as follows. The second sec-
tion recalls the framework of macroscopic reaction
schemes and their associated mass balances used
for bioprocess modelling. Based on this framework
section 3 describes the full horizon observer and
section 4 the asymptotic observer. Section 5 is
devoted to the hybrid full horizon asymptotic
observer. The performance of this observer is il-
lustrated on a simulation example in section 6.
Finally, section 7 draws some conclusions.

2. MACROSCOPIC REACTION SCHEMES
AND MASS BALANCES FOR BIOPROCESS
MODELLING

A bioprocess can be described by a reaction
scheme defined by a set of M reactions (Bastin
and Dochain, 1990). Such a reaction scheme can
be expressed by:

S (—vin& B > kg kellL,M] (1)
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where

e v; 1, and v;;, are the pseudo-stoichiometric coef-
ficients or yield coefficients;

® oy is the reaction rate;

e §; is the ' component;

e Ry (Py) is the set of & which are reactants
(products) in the reaction k;

e M is the number of reactions.

Assuming that the bioprocess takes place in a
perfectly stirred bioreactor, the system dynamics
can be described by a model resulting from mass
balances for the macroscopic species involved in
the reaction scheme:

dg(t)

S8 = Kele,t) - DOE®D) + F() - Q1) (2)

where

e £ € RN is the vector of concentrations;

o K € RVXM i5 the pseudo-stoichiometric coeffi-
cients matrix (M < N);

e o € RM ig the vector of reaction rates;

e D € R is the dilution rate;

e F € RV is the vector of external feed rates;

e Q € RV is the vector of gaseous outflow rates.

In the sequel, the external feed rates and gaseous
outflow rates are put together in a vector

u(t) = F(t) - Q1) (3)
Let:
&= &) (4)
where ¢; € RE(L < N) contains the elements of ¢
which are measured :

& =C{=[I, OrnN-r]¢ (5)

These measurements are provided by discrete
samples y(tx) :

y(te) = C&(tx) + €(tr) (6)

€ being a white noise sequence normally dis-
tributed with E[e(ty)] = 0 and Ele(ty,)eT (tx)] =
Sk Q ().

The other elements & € RIV-L) of € are the
variables which are not measured.

3. THE FULL HORIZON OBSERVER

The full horizon observer (FHO) is a stochastic
observer that consists in integrating the simula-
tion model between two measurements (predic-
tion) starting with the most likely initial con-
ditions identified on the base of all the avail-
able measurements (correction). This nonlinear
observer does not require any parameter tuning
and its optimal feature results directly from the
identification cost function of the initial condi-
tions (Bogaerts and Hanus, 2000),(Bogaerts and
Hanus, 2001). The efficiency of this observer is,
however, strongly dependent on the model quality
and particularly, in the case of a bioprocess, on the
quality of the kinetic model.

The prediction equation of the full horizon ob-
server is defined as

% — Kp(é,1) - DWOE() +ult)

) = glt,ult),ox) Yt € [t tiga]

(7)
where g(t,u(t),éo/k) is the prediction of £(¢) on
the time interval [¢y,tg+1] deduced from the in-
tegration of equ. (2) from the most likely initial
conditions éo /k- These latter are identified by solv-
ing a nonlinear optimization problem on the basis



of all the measurements y(¢;),j € [1, k] available
up to time k :

Argmin Jy, (o)
o (8)

k
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Where €(t;) = y(t;) — Cg(t;,u(t), &)

Note that a necessary condition of existence of
the solution (8) is that the number of available
measurements is greater or equal to the number
of initial states to identify (Bogaerts and Hanus,
2000).

As pointed out by Bogaerts and Hanus (2000,
2001) this method provides a continuous-time es-
timation based on rare and asynchronous mea-
surement samples, consists of a stochastic ap-
proach, is a true nonlinear approach (no approx-
imation such as linearization), does not require
any tuning, may be theoretically analysed (e.g.,
state estimation correction) and provides confi-
dence intervals for the state estimates. However, it
requires the full knowledge of the model structure

(2).

4. THE ASYMPTOTIC OBSERVER

The establishment of the asymptotic observer
(Bastin and Dochain, 1990) is based on the follow-
ing conditions : (&, t) is unknown, K is known,
L =dim(&) > p = rank(K);

Hence, there always exists a partition

&=l & 9)
so that the corresponding partition
K" =K, Ky (10)

involves a matrix K, € RP*M of full row rank.
Given such a partition of K, the following matrix
equation
AoKy+ Ky = On_p i (11)
has always a unique solution Ay, € RN-P)*M,
We can therefore define an auxiliary vector Z €
RN—D).
Z(t) = Ao&a(t) + &(t) (12)
whose dynamics is independent of the kinetics

@& 1) -

dz(t
% =—D(t)Z(t) + Aguga(t) +up(t)  (13)
where uT = [ulul] is the partition of u corre-

sponding to the partition of £. It is possible to
write the vector Z as a linear combination of the
vectors & and & of measured and non measured
states :

Z =A16 + A% (14)

where A4; € RIN-P)XL and A, € RIN-P)X(N-L)
The asymptotic observer is finally defined by :
dZ(t)

= = —D(t)Z(t) + AU1(t) + Us(t)
(15)

&) = Af(Z(1) - A& (1)

where A € RIV-L)X(N=P) js a left pseudo-inverse
of A2 .

In the sequel, for the sake of simplicity, the par-
tition ¢7 = [¢T¢T] will be chosen so that ¢7 =
[€T¢l]. In this particular case, the asymptotic
observer (15) can be replaced by

d2(t) _ —DZ(t) + AoUs(t) + Us(t)

E(t) = Z(t) — Aok (t)

with

A0K1 + Ky = ON—p,M (17)
and KT = [KTKI] and uT = [uTu]] the par-
tition of K and wu corresponding to the state
partition of ¢ = [¢T¢T].

If the asymptotic observer presents the major
advantage to be independent of the reaction rate
function (&, t) in (2) it has also some drawbacks:

e its convergence is function of the experimental
conditions (namely the dilution rate). This ob-
server may therefore not converge (batch process)
or converge very slowly (low dilution rate);

e the approach is completely deterministic and
therefore does not take into account the measure-
ment noises;

e if only descrete measurement are available, it
becomes necessary to extrapolate the samples in
continuous time.

5. THE HYBRID FULL
HORIZON-ASYMPTOTIC OBSERVER

The general idea of the full horizon-asymptotic
observer is to use the advantages of the FHO when
the model is of good quality and to evolve towards
the asymptotic observer when the confidence in
the kinetic model becomes very low.

In order to take count of this confidence in the
kinetic model and to allow the evolution of this
observer towards the asymptotic one according to
this degree of confidence the following modifica-
tions of the full horizon observer are proposed:

e the state transformation proposed by Bogaerts
(Bogaerts, 1999) :

Zi=6 (18)
Zy =8 + (1 - 8) A& (19)



where Ag is the solution of (17) and ¢ is supposed
to belong to the interval [0,1];

e a weighted output injection in the estimate {?1
§1=021+(1-d)y (20)
e the extension of the state estimate Z to :
VA VANAY) (21)

e the addition of a recall term towards the FHO
in the correction equation. Without this term a
solution of the optimization problem would be § =
0, leading directly the observer to an asymptotic
one.

(1-9)

— (22)

95

where 0% is the degree of confidence in the kinetic
model;

e the additipn of a recall term towards the initial
conditions Z2 of the asymptotic observer :

(1= 0)([£9(Zo) — 63*]TQQ§ [€5(Z0) — €9°]) (23)
where

. &9 is the estimate of the initial conditions of
the non measured elements of ¢ deduced from
the estimation of Zy and equation (19);

. &Y is an initial guess on £9; )

. Qgg+ is the covariance matrix of £ - &9,

In order to build a continuous measurement y(t)
on the basis of the discrete samples y(#x), a linear
extrapolation is used :

y(tr) — y(te—1)

y(te) + (8 —te) *
tgp — tg—1

b1 <t ST tep

y(0) 0<t<th

\

(24)
From these modifications, it is possible to derive
the hybrid full horizon-asymptotic observer :

(

dZ s 2 5
d—tl = K1¢p(Z1,&) — DZy +w
dZ . 8
d—t2 = 6K2@(Z1’§2) —DZs +us + (1 - 5)AOU1
dd
y — =
dt 0

& =621+ (1 =0y

€ = Zo— (1—0)Aoks Vi€ [ty try1]

(25)

k
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(1 = 0)(T Qg €%) (26)

+

where .
o e(t;) = y(t;) — &ultj, u(t), Zo)
o’ =&(Z) - &
This Algorithm allows the observer to evolve be-
tween the FHO and the asymptotic one according
to the value of & that depends itself on the quality
of the kinetic model. Indeed, § being one of the
optimization parameters, if the model is of good
quality a ¢ tending towards 1 will contribute to a
low cost function value. On the other hand, if the
model is of bad quality, a ) tending towards 0 will
contribute to a low cost function value. It is easy
to show that the two extreme cases are 4 fixed to 1
(corresponding rigorously to the FHO) and § fixed
to 0 (corresponding rigorously to the asymptotic
observer). Indeed, for ¢ fixed to 1, the last two
terms of (26) vanish and (25) and (26) become
equivalent to (7) and (8). In the case of § fixed to
0, the first term of (26) vanishes, the second one
becomes constant and the last one is minimized
for £€9(Z0) = &9 . Hence the minimization of (26)
always leads to the latter condition, which means
that there is no more correction in the procedure.
Finally, (25), with & fixed to 0 and £9(Z0) = &9’
is equivalent to (16). Note that this theory can be
extended to the general case where the partition
T = [¢T¢I does not correspond to the partition
[€T¢T. The following section illustrates the per-
formance of this hybrid observer on a simulation
example.

6. EXAMPLE ON A SIMULATED
FED-BATCH BACTERIAL CULTURE

Consider a fed-batch bacterial fermentation sup-
posed to take place in a perfectly stirred bioreac-
tor. Consider the following reaction scheme :

vsS 4 X (27)

where S denotes the substrate, X the biomass, and

')
vs the yield coefficient. X denotes an autocat-
alytic reaction. The mass balance corresponding
to this reaction scheme is :

dC’;t(t) =vsp(Cs(t), X(t)) — D(t)Cs(t)
+D(t)C¢ (28)
dCx (1)

2~ =¢(Cs(1), X(1) - D()Cx (1) (29)



where Cgs(t) and Cx(t) are the substrate and
biomass concentrations, D(t) is the dilution rate,
¢ is the reaction rate and C%* is the substrate
concentration in the feeding medium. The reac-
tion rate ¢ will be described by using the Monod
law:

/JmazS

Kn+S (30

p=0Cx
The numerical values used for the simulation
are derived from (Holmberg, 1983) where this
model has been identified for a batch culture of
B. thuringiensis : vs = 0.5g(10"cell)™!; K,,, =
12g17"; pmae = 1.4h7"5 Cs(0) = 129171 Cx (0) =
1.410M cell 171 8™ = 20g1~1; D(t) = 0.01¢[h~1].

The simulation of this process is presented in fig-
ure 1. In the sequel, this simulation will be consid-
ered as the real process from which discrete sam-
ples of the substrate are supposed to be measured
with a sampling time of 1h. A white measurement
noise of zero mean and 0.5g] !standard deviation
has been added to these measurements.

In order to illustrate the performance of the full
horizon-asymptotic observer the biomass concen-
tration will be estimated thanks to the algorithm

proposed in section 5, with Ay = %, p =

mae — * —
CXm, Ug = 00]., Cg( = ]., ch = 0.01.
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Fig. 1. Simulation of a fed-batch bacterial culture
o :discrete noisy samples (with the 99 % con-
fidence intervals),—continuous non measured
signal.

This observer is used in order to estimate the
biomass (X) which is not measured. Two cases
are presented. First the use of the exact model
(figure 2), secondly, the use of a very bad model
(figure 3).

In the first situation (2), the hybrid and the
FHO observers behave in a very similar way and
converge rapidly to the true state. The asymptotic
observer also converges but more slowly because of
the low dilution rate (especially at the beginning
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Fig. 2. Estimation of the substrate and the
biomass concentrations (exact model).
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Fig. 3. Estimation of the substrate and biomass
concentrations (modelling error : o
0.7h~ " and K,, = 18¢l~" in place of ez =
1.4h=" and K,, = 12g171).

of the experiment). The hybrid observer takes
count of the model quality since § remains near
1. In the second case (3), at the beginning of
the experiment, the hybrid observer behaves as
the FHO, however, it rapidly detects the bad
quality of the model and 0 evolves to 0. The
hybrid observer tends therefore to the asymptotic
observer and converges with it to the true state
whereas the FHO diverges from the true state.
Note that the parameter o5 appears as a tuning
parameter of the hybrid observer reflecting the
sensitivity of the observer to the model quality.

These results can also be compared to the estima-
tion of the biomass with the Kalman /asymptotic
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Fig. 4. Estimation of the substrate and biomass
concentrations by a kalman/asymptotic ob-
server (modelling error : fmae.r = 0.7h~! and
K,, = 18gl~! in place of pipma, = 1.4h~! and
K,, = 12g171).

hybrid observer (Bogaerts, 1999) in the case of
a bad model (¢f. figure 4). Finally, the compara-
ison can be made on the basis of the root of
the mean square error of the biomass estima-
tion. These values are 0.7534 10'!cell I~! for
the full horizon observer, 0.5944 10''cell I~! for
the asymptotic observer, 0.4789 10" cell I=' for
the full horizon/asymptotic hybrid observer and
0.5561 10%cell 17t for the Kalman/asymptotic
hybrid observer.

7. CONCLUSION

The full horizon observer is based on the identifi-
cation of the most likely initial conditions. This
observer shows very interesting properties that
make it particularly suitable for bioprocesses state
observation. However, this observer has the major
drawback to be strongly dependent on the model
quality. The asymptotic observer provides an es-
timation of the state without any knowledge of
the kinetic model. However its convergence rate is
completely defined by the dilution rate.

In this paper, a new hybrid observer is proposed.
The hybrid full horizon-asymptotic observer is
able to evolve from the full horizon observer to
the asymptotic observer according to the model
quality. This evolution is driven by the ability of
the observer to jointly estimate the states and
to identify on-line a confidence parameter with
respect to the model quality. This parameter may
vary continuously from 100% to 0%. Those limits
correspond rigorously to the full horizon observer
(100% confidence on the kinetic model) and to the

asymptotic observer (0% confidence on the kinetic
model).

Simulations of fed-batch bacterial cultures show
very satisfactory results. In conclusion, this con-
tribution shows that it is possible to build a new
hybrid observer evolving between the full horizon
and the asymptotic observer. Note that one of
the advantages of this new pair (full horizon-
asymptotic observer) is the possibility to study
(in future work) the mathematical properties of
the state estimation error (correction, covariance)
as it has been proved that these properties may
be analyzed in the full horizon observer on the
basis of a first order approximation (Bogaerts and
Hanus, 2001).
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