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Abstract: Experiences from field tests of a nonlinear observer-based molten metal analysis
estimation system are reported. The system performance is tested for a wide range of process
conditions both on bulk data and in a supervised experimental campaign. Estimation of
process model parameters and the observer design are discussed and exemplified on logged
data. Observer performance is shown to be high with a mean absolute final carbon content
estimation error for admissible heats equal to0.0012%.
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1. PROBLEM DEFINITION

The aim of the top blown basic oxygen process is
to reduce the contents of carbon, silicon and other
contaminating components in the hot metal from the
blast furnace by oxidation.

The converter is controlled by an operator, who judges
the state of the process based upon a number of
measurements,e. g. a sound level measurement ob-
tained by a sonicmeter and analysis of the waste gas,
(Widlund et al., 1998). The blowing is completed
when the content of carbon in the metal is considered
to be right. The quality of the final product is therefore
highly dependent on the experience and judgment of
the individual operator.

The main quality measure of the final product is the
carbon content since no silicon is normally left by the
end of a heat. However, direct measurement of the
carbon content during the heat is not possible due to
the high temperature and hostile environment in the
converter.

If the predefined carbon content is not achieved, the
process needs to be repeated with a significant loss of
energy and other resources as a result. When the final

carbon content is too low, compared to the ordered
quality, then some superfluous oxygen has been spent
and the process has not been run efficiently.

2. SOLUTION

An observer comprised of a nonlinear simplified math-
ematical model of the LD-converter (Widlundet al.,
1998) and a nonlinear feedback is employed in order
to obtain real-time estimates of the molten metal anal-
ysis. Measurements of the oxygen flow through the
lance as well as the analysis and the flow of waste
gas are used for updating the process model, Fig. 1.
The observer design method is based on evaluating
the sensitivity functions of the process output signals,
i. e. the off-gas analysis, with respect to the process
states,i. e. the carbon and silicon content, (Johansson
et al., 2000). A detailed stability analysis of the design
is carried out in (Johansson and Medvedev, 2001).

In the sequel, the observer structure and design are
evaluated on experimental data for a wide range of
process conditions, providing insights into the accu-
racy and robustness of the final carbon content esti-
mate.

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



3. PROCESS MODEL

A process model has been developed at the Division
of Metallurgy of the Royal Institute of Technology in
Stockholm, Sweden and can be simplified to

ṗ = Ap+Bu+ Ey
y = h(p, u) (1)

The state vectorp = [pSi pC]T represents the total
contents ofC andSi in the metal, given in moles.
The linear part of (1) is asymptotically stable since
A = diag(−a1,−a2) where the coefficientsa1 and
a2 are both positive, althougha2 is very close to zero.

The derived model of the LD-converter is based on
mathematical description of the physical and chemical
processes taking place in the process during a heat.
Therefore, the process model is independent of the
actual converter individual it works with. Of course,
this is achieved at cost of quite coarse description of
the physical and chemical phenomena and should be
compensated for via a robust design of the observer
feedback.

3.1 Input signals

The first elementu1 of the input vectoru = [u1 v
T ]T

represents the inflow of oxygen.

Each elementvi in the vectorv represents the flow of
additivei released into the liquid metal due to melting
and is thus not an actual control signal. Melting is
assumed to start when the additive is heated to its
melting point and after that proceed at a constant rate.
DefiningTi andτi as the heating time and the melting
time, respectively,vi can therefore be expressed as

vi(t) =
1
τi

(wi(t− Ti)− wi(t− Ti − τi))

wherewi(t) is the accumulated inflow of additive
i, which can be regarded as a control signal or a
measurable disturbance.

The matrixB consists of two rows of elements speci-
fying the percentage ofSi andC in each additive. The
elements ofB and the parametersτi andTi account
for the main source of uncertainty in the model.

3.2 Output signals

The outputy denotes the decarburization rate and is
a nonlinear function of the statep and the inputu1.
Since it represents the rate at which carbon is oxidized,
it affects the derivative of the carbon content through
the coefficient−1, which motivates the vectorE =
[0 − 1]T .

The decarburization rate is modeled as

h(p, u) =
1

1/s1(pC) + 1/s2(pSi, u1)
(2)

where

s1(pC)
4
= kC(pC − p0

C)

s2(pSi, u1)
4
= 2(u1 − kSipSi)

For convenience, the arguments ofs1 and s2 are
dropped in the sequel when there is no risk of ambi-
guity.

In fact, the actual measurement signal from the con-
verter is not the decarburization ratey. Instead, the
waste gas flow and the content ofCO, CO2, andO2

in it are measured. Since the three components in the
waste gas analysis depend only on the decarburization
rate, they can be regarded as redundant measurements
of the latter. An estimate of the decarburization rate is
thus calculated by the control system of the plant and
this estimate is used as a measured output.

3.3 Model parameters

Process model (1) includes a number of parameters
that have somehow to be evaluated. On the one hand,
estimates of those can be obtained by considering the
physical and chemical phenomena occurring during
the heat. On the other hand, the parameters can be
seen as degrees of freedom of the model and be esti-
mated from experimental data to achieve best observer
performance. In practice, it is reasonable to combine
those two by first obtaining a coarse estimate of the
quantity in question from the first principles model
and then to update it by optimizing the model perfor-
mance in the estimation algorithm.

In the present application, model optimization is com-
plicated by the lack of dynamic metal analysis data.
Only final values of carbon content are available. Thus
physical estimates of the model parameters are of im-
portance.

In (2), the constantkC can be for instance estimated
from a logged decarburization rate signal. For this end,
some simplifications of (1) have to be done.

By the end of a heat, there is no silicon left in the metal
which justifies the reduction of one of the process
state, i. e. pSi ≡ 0. Since only the final part of
the decarburization signal will be used for parameter
estimation, the inflow of oxygen can assumed to be
constantu̇1 ≡ 0, u1(t) ≡ U1. Furthermore, it is
assumed thata2 = 0 and there are no additives,i. e.
v ≡ 0.

Then, process model (1) reduces to a first order differ-
ential equation

ṗC = −y



where

y =
1

1
kC(pC−p0

C)
+ 1

2U1

Expressed iny, the process model is, after some
rearrangement

ẏ = −kCy(y − 2U1)2

4U2
1

Definex = y/(2U1) and

z =
xe

1
1−x

1− x

In the new variablez, the process model is

ż = −kCz (3)

By identifying the parameter in the model above,
estimates ofkC can be obtained.

4. MOLTEN METAL ANALYSIS OBSERVER

Since it is technically complicated and costly to imple-
ment a real-time chemical analysis of the molten metal
in the converter during the heat, different estimation
techniques based on mathematical modeling of the
process and on-line sensory data are often used.

However, nonlinear observers have never before been
used in an industrial scale molten metal analysis es-
timation system. All previously developed solutions
rely on static process models and/or neural networks
as the implementation engine. The use of physical
models in the estimation system allows for its fur-
ther development into a closed-loop control system
for the converter process. It also enables a thorough
mathematical analysis of the stability and convergence
properties of the estimation algorithm.

4.1 Observer structure

Designing a feedback from all three components of the
off-gas analysisψ to an estimatêp of the state vectorp
is a complicated task, which is the reason for feeding
back the estimated decarburization ratey instead. This
signal is scalar and likely to contain the major part of
the relevant information in the off-gas analysis.

The suggested observer structure is

˙̂p=Ap̂+Bu+ Ey +Kh′(p̂, u)(y − ŷ) (4)

ŷ = h(p̂, u)

whereh′(p, u)
4
= ∂h (p, u)T

/∂p and the gain matrix
K is a positive definite solution to the Lyapunov
equation−D = ATK−1 + K−1A where the design
matrixD is positive semidefinite.

Fig. 1. Nonlinear molten metal analysis observer

The factorh′(p̂, u) in the feedback term weighs the
measurement by its relevance. If the sensitivity to
the state is low then the measurement contains little
information about the state. In this case the feedback
weight is weak in order not to affect the state estimate
with irrelevant information. If the sensitivity is high
then there is relevant information about the state in the
measurement and the weight is consequently strong.
Ideally, the weight should beh′(p, u) but since this
quantity is not available, it is assumed thatp̂ ≈ p
and the sensitivity calculated at the estimated state,
h′(p̂, u), can be used instead.

4.2 Observer analysis and design

A painstaking study of stability and convergence
properties of observer (4) has been carried out in
(Johansson and Medvedev, 2001). It has been shown
that the observer can be seen as a special case of the
Extended Kalman Filter and is suitable for a broad
class of dynamic systems with a nonlinear output
transformation. It is also proved that the estimation
error dynamics are asymptotically stable and a region
of attraction is derived. From analytical results, the
obtained estimate of the latter appears though to be
quite conservative.

Some idea of the real region of attraction can be
obtained by simulating the observer over finite time
for some combinations of errors in the initial value
of the state vector and taking the difference between
the final value of the estimate and the final value of
the open loop estimate. If this difference is large, it is
likely that the observer estimate would have diverged
ast → ∞ and if it is small the estimate would have
converged.

Fig. 2 shows the result of such a simulation with
different errors in the initial values. The error in the
estimatep̃ = p − p̂ is assumed to have converged
if the final value |p̃| is less than 500 moles, which
is an acceptable error window for the estimate. This
yields the band-shaped region on the left side of Fig. 2.
If only the error in the carbon content̃pC = pC −
p̂C , which is the important quality measure of the



Fig. 2. Estimated region of attraction for|p̃| (left) and
|p̃C| (right). The circle represents the theoreti-
cally calculated region of attraction.

Fig. 3. Best value of the factor in the equation fors2
in (2)

observer, is considered, then the region of convergence
becomes considerably larger (Fig. 2, right).

4.3 Observer model validation

To validate the process model adopted for observer
design, optimization of a known parameter in the
equation fors2 in (2) has been used. There, the factor2
is very certain and appears due to the fact that there are
two atoms of oxygen in a molecule ofO2. Allowing
variation of this factor, the value of it providing best
estimate of the measured final carbon content for a
number of heats is sought. The results are presented
in Fig. 3. Since the computations are performed for
the model in closed loop,i. e. used in an observer, the
results reflect not only the model quality but as well
the observer performance.

Obviously, for the heats with low final carbon content
estimation errors, the value of the estimated parameter
is very near to2. The heats with relatively high estima-
tion errors correspond to high, physically unplausible,
values of the coefficient. Thus, one can conclude that
the quality of the model is satisfactory when it applies.

The deviating heats will be further addressed in the
sequel.

4.4 Observer implementation

In order to investigate the performance of the observer-
based estimation technique on different LD-converters
and for a broad range of process conditions, long-term
real-time tests of the algorithm have been launched at
SSAB Tunnplåt in Luleå and SSAB Oxelösund.

The observer is implemented on a process control
computer monitoring regular steel production in steel
converters, with OpenVMS as the operating system.
The molten metal analysis observer is run as an asyn-
chronous system process with a fixed cycle time of one
second.

During a heat, the estimation algorithm acquires ex-
ternal data from the LD converter process, generates
internal data,i. e. process state information, and gen-
erates output data,i. e. molten metal analysis in real
time. These data and additional information on the
heat are written to files in Matlab format. Each heat
is assigned to a separate file. The data are subject to
thorough examination and analysis if a significant dis-
crepancy between the predicted and actual final carbon
content is observed. Extra measurements with the sub-
lance and controlled introduction of additives are a
part of the experimental program.

5. EXPERIMENTAL RESULTS

The above described molten metal analysis observer
has lately been intensively tested on three different
converters at two steel mills belonging to the SSAB
Group. Hundreds of heats have been examined and the
results are reported in (Birket al., 2002). A conference
version of this paper can be found in (Birket al.,
2001). Generally, one can conclude that the accuracy
and robustness of the estimation algorithm have great
potential. However, based on the bulk information, it
is difficult to point out exactly in what way the process
model and observer design ought to be improved to
provide higher accuracy for a broader class of process
conditions. It has also become clear that a significant
portion of collected data is unreliable due to different
kinds of process and measurement irregularities.

5.1 Supervised experimental campaign

In this section, the data and results of a supervised
experimental campaign are presented. All process data
are carefully checked and the process conditions such
as target carbon content and lance program, are se-
lected to cover the ordinary production envelope. In-
troduction of additives late in the heat has been pro-
hibited. The goal of the campaign is to fairly evalu-
ate the achievable estimation accuracy in final carbon



Fig. 4. Final carbon content estimation error for each
heat

Fig. 5. Final carbon content estimate error vs final
carbon content

content and isolate individual process factors that lead
to significant estimate deviations. The test data set
includes15 heats. The outcome of final carbon content
estimation is depicted in Fig. 4.

Clearly, both underestimation and overestimation of
final carbon content occur. Furthermore, neither high
nor low values of the estimation error are bound to
a particular time interval. The predominantly positive
values of the estimation error corresponding to under-
estimation of the actual final carbon content can be
explained by the observer design. Since the feedback
signal of the observer is weighted by the sensitivity
function of the decarburization rate with respect to the
carbon and silicon content, it is more likely that the
estimate does not converge for relatively high values
of carbon content where the sensitivity function is low.
It is also confirmed by Fig. 5 where the estimation
error is plotted as a function of final carbon content.

Since the process model includes a number of param-
eters, it is interesting to know whether adjustments of
those lead to significant improvements in estimation
accuracy. Fig. 6 shows the best achievable accuracy
in final carbon content for the constantkC being ad-
justed for each heat. As it has been shown before

Fig. 6. Absolute value of best achieved final carbon
content estimate error withkC = var. α is
proportional tokC .

Fig. 7. Measured and estimated decarburization rate
for heat number 902. Notice a drastic disturbance
in the measured decarburization rate in the begin-
ning of the downward slope.

(see (3)), the value ofkC is of crucial importance for
the decarburization process. Apparently, despite the
significant variations in the value of the constant, no
visible progress is achieved for the worst estimates.

This insignificant effect of parameter optimization on
the poor estimates is quite typical and also applies
to variation of other process and design parameters.
Thus, the observed relatively large deviations from
the measured metal analysis have little to do with the
observer but are caused by process disturbances.

In Fig. 7, the measured decarburization rate for heat
number902 is plotted. From Fig. 4, it can be seen that
a significant overestimation of the final carbon content
has occurred for this heat. The observer could not
track the unmodeled drastic increase in the measured
decarburization rate just before the downward slope.
In fact, this disturbance is caused by a corresponding
drastic increase in the waste gas flow, a phenomenon
that cannot be explained from the logged signals.



Fig. 8. Waste gas flow for heat number 902.

Fig. 9. Measured and estimated decarburization rate
for heat number 871. Notice a peak the measured
decarburization rate in the end of the downward
slope.

Another type of process disturbance causing abnormal
deviations in the observer estimate can be seen in heat
number 871, where the final carbon content is under-
estimated. In Fig. 9, a disturbance peak is obvious on
the downward slope of the measured decarburization
rate curve. This time, the disturbance can be clearly
attributed to an imperfection in the waste gas analysis
operation, as Fig. 10 indicates.

Similar explanations can be found in the logged data
for all the heats where the absolute value of the final
carbon content estimation error exceeds0.005%. This
is well in line with the initial experiments with the
molten metal analysis observer reported in (Johansson
et al., 2000).

6. CONCLUSIONS

A nonlinear observer is shown to correctly estimate
final carbon content of molten metal in the Lintz and
Donawitz (LD) converter process. The mean absolute
finite carbon content estimation error for the heats
where the process model is validated has been found
to be0.0012%. The overall mean absolute estimation

Fig. 10. Measured content ofO2 in the waste gas for
heat heat number 871. Notice the sharp peak just
before the end of the process.

error for the whole supervised experimental campaign,
including the heats subject to severe unmodeled pro-
cess disturbances, is0.0067%. Apparently, to achieve
high estimation accuracy, the process itself and the
measurement equipment should be in a flawless con-
dition.
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