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Abstract: In this paper the nonlinear H1 con trol for robot manipulators introduced
in (F eng, W., P ostleth w aite,I., 1994) is extended. An additional in tegral term is
included to cope with persistent disturbances, such as constant weigh ts at theend-
efecctor. The extended controller is in terpreted like a computed torque control with
and external PID, whose gain matrices vary with the position and velocit y of the robot
join ts. A particular case of the cost variable weigh ting matrix is studied in which the
resulting external nonlinear PID does not depend on the atten uation level 
 of the
H1 formulation. Finally, experimental results are presented for the RM-10 industrial
robot. Copyright c
2002 IFA C.
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1. INTRODUCTION

In automatic con trol,despite considerable e�ort
to minimize system modeling errors, uncertain-
ties are usually present and sometimes are sig-
ni�cant. Research on the motion con trol ofrigid
robot manipulators has known signi�cant progress
over the last few years. An interesting question is
whether con trol laws possess desirable rejection
properties even if perfect models are assumed to
be available. In this paper, a vector of disturbance
signals acting on the input channels (torques) of
the robot is used to represent the combined e�ect
of modeling errors and external disturbances. The
con trol system ability to reject these disturbances
and maintain small tracking error (without exces-
sive con trol e�ort) is measured in aL2 gain sense.
A control design {formulated into a nonlinear H1
optimization problem {is proposed to achiev e op-
timal disturbance rejection. Based on this formu-
lation, a nonlinear H1 suboptimal control law is
deriv ed which consists of a feedforward/feedback
structure.

The remainder of the paper is organized as fol-
lows: An approach upon the concepts of L2 gain
and H1 optimization in the context of nonlinear
systems are in troduced in Section 2. In Section
3 a suboptimal nonlinear controller is deriv ed to
maximize the robot manipulator ability to reject
external disturbances acting on the input channel,
assuming a perfect system model. In Section 4,
the nonlinear H1 con troller is expressed in the
form of a computed torque con trolwith an ex-
ternal nonlinear PID controller. A nonlinear H1
con troller for the RM-10 robot manipulator is
designed and experimental results are sho wn in
Section 5. Finally, the major conclusions to be
dra wn are given in Section 6.

2. NONLINEAR H1 CONTROL APPRO A CH

The dynamical equation of a nth order smooth
nonlinear system which is a�ected by an unknown
disturbance can be expressed as follows

_x = f (x; t) +G (x; t)u+K (x; t) d (1)
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where u 2 <p is the vector of control inputs, d 2
<q is the vector of external disturbances and x 2
<n is the vector of states. Performance can be
de�ned using the cost variable z 2 <(m+p) given
by the expression

z =W

�
h(x)
u

�
(2)

where h (x) 2 <m is the error vector to be con-
trolled andW 2 <(m+p)�(m+p) is a weighting ma-
trix. If we assume that the states x are available
for measurement then the optimal H1 problem
can be posed as follows (van der Schaft, A., 1992):

Find the smallest value 
� � 0 such that for any

 � 
� there exists a state feedback u = u (x; t)
such that the L2 gain from d to z is less than or
equal to 
; that is

Z T

0

kzk
2
2 dt � 
2

Z T

0

kdk
2
2 dt (3)

The integral expression on the left-hand side of
expression (3) can be written as

kzk22 = zT z =
�
hT (x) uT

�
W TW

�
h(x)
u

�

and matrix W TW can be partitioned as follows

W TW =

�
Q �C
�CT R

�

where

Q =

2
4 Q1 Q12 Q13

Q12 Q2 Q23

Q13 Q23 Q3

3
5 �C =

2
4
�C1
�C2
�C3

3
5

The matrices Q and R are symmetric positive
de�nite and such that Q� �CR�1 �CT > 0.

An optimal control signal u� may be computed
for system (1) if there exists a smooth solution
V (x; t), with V (x0; t) � 0 for t � 0, to the
following Hamilton-Jacobi equation:
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for each 
 >
p
�max (R) � 0. In such case, the

optimal state feedback control law {see (Feng, W.,
Postlethwaite, I., 1994){ is derived as

u� = �R�1
�
�CTh(x) +GT (x; t)

@V

@x

�
(5)

3. NONLINEAR H1 OPTIMIZATION IN
MANIPULATOR MOTION CONTROL

The following Euler-Lagrange equations of motion
are used to describe the behavior of a n degree-
of-freedom (DOF) robot manipulator

M(q)�q + V (q; _q) +G (q) = � + d� (6)

where q is the vector of joint variables (joint
positions) and _q is its temporal derivative (joint
speeds). It is supposed that these two vectors
are available for measurements. The vector �

(torques applied on the axis of the joints) is the
signal input of the system and d� represents the
total e�ect of system modelling errors and the
external disturbances. The inertia matrix M (q)
is symmetric and positive de�nite, V (q; _q) is the
vector of centripetal and Coriolis terms and G (q)
is a vector which consists of the gravitational
terms.

Denoting by qr; _qr and �qr the desired position,
speed and acceleration of the joints, respectively,
the tracking error vector x and its derivative _x are
de�ned as follows:

x =

2
4 _e

eR
edt

3
5 and _x =

2
4 �e
_e
e

3
5 (7)

where

�e = �q � �qr;

_e = _q � _qr;

e = q � qr;

R
edt=

tZ
o

(q � qr) dt:

For system (6) a control law of the following
structure is considered

� =M (q) �q + V (q; _q) +G (q)� (8)

�
1

�
(M (q)T _x+ C(q; _q)Tx) +

1

�
u

where

C (q; _q) =
1

2
_M (q) +N (q; _q)

and the matrices _M (q) and N (q; _q) 1 must be
computed through the following expressions:

_Mij =
d

dt
Mij =

@Mij

@q
_q =

nX
k=1

@Mij

@qk
_qk (9)

1 Note that the N matrix is skew-symmetric. We will use
this propriety in the Proofs.



Nij =
1

2

nX
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It can be shown that

V (q; _q) = C(q; _q) _q

It should be noted how vector u in control law (8)
represents the additional control e�ort necessary
for attenuating the disturbances.

Matrix T in equation (8) can be partitioned as
follows:

T =
�
T1 T2 T3

�
(11)

with T1 = �I , where � is a positive scalar and I is
the nth-order identity matrix.

On substituting the expression of the control law
from (8) into the model equation of the robot and
de�ning d = �d� yields

MT _x+ CTx = u+ d (12)

which is a 3nth order equation of the nonlinear dy-
namics of the error. Thereby, the control problem
is to minimize the tracking error x in the presence
of d without excessive control e�ort u.

Equation (12) can be rewritten into the standard
form of equation (1) as follows:

f (x; t) = T�1o P Tox (13)
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and

G (x; t) = K (x; t) = T�1o

2
4M

�1

O

O

3
5

where I is the identity matrix, O the zero matrix,
both of n-th order and

To =

2
4 T1 T2 T3O I I

O O I

3
5

If function h (x) in expression (2) is chosen equal
to the error vector x, then the following expres-
sion constitutes a solution of the Hamilton-Jacobi
equation (4):

V (x; t) =
1

2
xTT T

o
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4M O O
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O S � Y Z + Y

3
5Tox (14)

where the matrices Y; S; Z and T =
�
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�
can be obtained solving the equation2
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3
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�
= 0

The proof of this result can be found in appendix
A at the end of the paper.

The algorithm to obtain matrix T is the following:

(1) Compute T1 and T3 solving the following
Riccati algebraic equations:
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(3) Compute T2 solving the Riccati algebraic
equation:
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Substituting for the value of V (x; t) into equation
(5), the control law u� which corresponds to the
H1 optimal index 
 is

u� = �R�1
�
�CT + T

�
x

4. THE CONTROL LAW LIKE A
NONLINEAR PID

There exists in the literature several control meth-
ods in which robot controllers have been posed
as PID control {see, for example, (Ramirez J.A.,
Cervantes I., Kelly R., 2000). In this section it
is shown how the obtained control law may be
interpreted like a computed torque control with
an external nonlinear PID controller. Substituting
for the expressions of T , _x and u� in (8), and after
some computations the optimal control law can be
written as:
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Keeping in mind the de�nition of x, the control
law can be rewritten as follows

�� =M �qr + V +G�
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or in a more compact expression:

�� =M (q) �qr + V (q; _q) +G (q)�

�
�
KD _e+KP e+KI

R
edt

�
where

KD =
1

�

�
MT2 +

�
1

2
_M +N

�
T1 +R�1

�
�CT
1
+ T1

��

KP =
1

�

�
MT3 +

�
1

2
_M +N

�
T2 +R�1

�
�CT
2
+ T2

��

KI =
1

�

��
1

2
_M +N

�
T3 + R�1

�
�CT
3
+ T3

��

A particular case is obtained if components of the
weighting matrix W TW satisfy Q1 = w2

1I , Q2 =
w2
2I , Q3 = w2

3I , R = w2
uI , Q12 = Q13 = Q23 = O,

and �C1 = �C2 = �C3 = O. In this case the gain
matrices take the form
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These expressions have an important property:
they do not depend on the parameter 
. Thereby
we have algebraic expressions to compute the
general optimal solution for this particular case.

5. EXPERIMENTAL RESULTS FOR THE
RM-10 INDUSTRIAL ROBOT

The RM-10, shown in Figure 1, is a six-degree-of-
freedom revolute joint manipulator arm.

All the six joints are driven by DC-brushless low-
inertia electric motors which provide a uniform
torque for all joint positions, and enables high
control torque peaks. Torque is delivered to the
joint axis through gear reductions, thus RM-10
is an indirect-drive manipulator. The joints also
provide an electric brake to block the manipulator
arm in any position {see (System Robot, 1991).

Coupled to each motor axis there is a two-
pole resolver device which provides an accurate
measurement of the correspondent joint position.

Fig. 1. The RM-10 Robot Manipulator

These measures will allow, as usual, the closed-
loop control of the system. The RM-10 system
employs a VME bus based architecture, provid-
ing independent control boards for every joint.
Particularly, the real-time DS1103 control board,
dSPACE trade, was employed (Implementation
Guide, 1999), (MOO, 1998), (MOO, 1990). The
control board was plugged into the expansion bus
of a commercial PC, holding a 333MHz PowerPC
as a main processor and an additional DSP as an
input/output processor.

Before accomplishing the design of a controller
it is necessary to obtain a dynamic model of
the robot manipulator. According to the Euler-
Lagrange formulation (Craig, J.J., 1989), the dy-
namic model of a general n-link rigid-body robot
is a second order nonlinear equation, as shown in
Equation 6.

In this case, the motion equation is complex and
contains a number of hard-to-handle nonlinear
terms (Perez, C., 1999). In order to simplify
the controller design, friction terms in equation
(6) have been neglected, and included as model
uncertainty. This yields a very simpli�ed model
that only takes into account diagonal terms.

A number of additional parameters are required
to characterize the dynamic model of the robot
manipulator, such as link masses and inertias.
These parameters have been estimated by geomet-
ric measurements and dynamical experiments of
the robot arm. In Table 1, the estimated masses
of the di�erent links of the robot are shown. These
values may help to make an idea of the character-
istics of the robot.

link mass (Kg)

1 38.65
2 51.80
3 84.10
4 33.89
5 7.36

6 5.00

Table 1. Estimated masses of the links



A diagonal W TW weighting matrix has been
considered to design the controller. Table 2 shows
the values for the diagonal weighting submatrices
used for the RM-10 control synthesis.

Signal to minimize Weighting matrix

Speed error _e Q1 =
�
1

2

�
2

I

Position error e Q2 = I

Integral error
R
edt Q3 = 32I

Additional control e�ort u R = 0:42I

Table 2. Weights for the controller

In the experiments presented in this paper, the
position references (which are computed by a
trajectory generator) are �fth degree polynomials
between the initial position [q1 q2 q3 q4 q5 q6] =
[0:0 0:0 0:0 0:0 0:0 0:0 ] rad to �nal position equal
to [0:6 � 0:3 � 0:3 0:6 0:6 0:6] rad with initial
and �nal speeds and accelerations equal to zero.
The transition time is 4.3 seconds.

The position errors and speed errors are shown
in Figure 2 and 3 respectively, while the control
signals generated by the controller are presented
in Figure 4. It can be seen how the performance
is aceptable for all axes, with small errors in both
angular positions and velocities. In the same way,
it should be noted how the position error does not
tend to zero despite of the integral action. This
e�ect is due to a dead zone because of friction in
the actuators, which is not compensated in this
work. This fact agrees with the evolution of some
control signals, whose magnitudes increase until
their respective actuators leave their dead zones.
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Fig. 2. Position errors in the six axes of the RM-10

6. SUMMARY

In this paper a nonlinearH1 control for robot ma-
nipulators has been developed which copes with
persistent disturbances due to the inclusion of an
integral term. This controller can be interpreted
like a computed torque control with an external
nonlinear PID controller. A particular case has
been obtained in which the nonlinear PID gains do
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Fig. 3. Speed errors in the six axes of the RM-10
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Fig. 4. Control signals generated by the controller

not depend on the value of the attenuation level 
.
Finally, experimental results have been presented
by using an industrial robot which proves the good
performance supplied by this controller.
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Appendix A. PROOF OF RESULTS IN
SECTION 3

We will show that the scalar function V (x; t) {
equation (14){ is the solution for the Hamilton-
Jacobi equation (4). The gradient of V (x; t) is
given by
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Making some computations we can obtain this
expression
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Using equation (13) the �rst term of the last
expression can be written
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The derivative of V (x; t) with respect to the time
is
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Adding the previous expressions we arrive at
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Since matrix N is skew-symmetric and due to the
particular structure of To we can write
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Also we can compute GT (x; t)
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Using the computed expressions for the terms of
the Hamilton-Jacobi equation given in (4) and the
value of h (x) = x we have
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and by simplifying we obtain expression (15).


