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Abstract: Multi-Layer Perceptron network modeling for nonlinear dynamic systems is 
studied. The situations that only a relatively small number of training data is available 
and that the training data does not cover all system dynamics are mainly concerned. 
An improved method is proposed by training with two sets of data, which is shown to 
give better generalization performance in the above-mentioned circumstances. 
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1. INTRODUCTION 
 

The main objective in nonlinear dynamic system 
modeling using artificial neural networks is to obtain 
a network model with good generalization 
performance (Hertz, and Krogh, 1991; Narenda and 
Parthasarathy, 1990; Qin et al, 1992).Generalization 
refers to the ability to predict unseen data. It is 
understood that in neural network training, if the 
training stops when the training error reaches the 
minimum, the generalization performance can be 
poor (Prechelt, 1998). Various solutions to this 
problem are available, including cross-validated early 
stopping technique and regularization (Poggio and 
Girosi, 1990; Prechelt, 1998). In cross-validated early 
stopping technique, two data sets are involved, one is 
used for training, and the other is used for validation. 
The cross-validated early stopping technique is 
implemented as follows: the behavior of the trained 
network is evaluated by the validation data and the 
training will stop at the point that the error on the 
validation data set starts to rise instead of decreasing. 
Regularization technique is in fact a constrained 

training process, where a penalty term ( E∆ ) is added 
to the cost function E  which restricts the variance of 

the model. The modified cost function E
~

 becomes:                       

 EEE
~

∆λ+=    (1) 
where λ  is a scalar that determines the influence of 

E∆ .  
 

It has been proved that early stopping is equivalent to 
zero-order regularization (Poggio and Girosi, 1990); 
there is an analogy between the number of iterations 
and the regularization parameter λ  in (1). The 
difficulty with regularization is in choosing the 
regularization parameter. In order to determine a 
possible regularization parameter, additional 
computation and inference based on other criteria are 
required. In general the early stopping technique is 
widely used because it is simple to understand and 
implement and has been reported to be superior to 
regularization methods in many cases.  
 
In this paper, an improved method of training neural 
networks is proposed based on the previous result 
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made by the authors (Li and Thompson 2000). To 
achieve better generalization performance in case 
that the available training data set is of relatively 
small size and does not cover whole system 
dynamics, two sets of data are used. The proposed 
method adopts the core concept in the cross-validated 
early stopping technique. The main difference 
between the new method and the early stopping 
technique is that in the new method both data sets are 
explicitly involved in training to update the weights. 
In order to do so, two training loops, namely an inner 
loop and an outer loop, are introduced into the new 
method. The inner loop performs cross-validated 
early stopping training using a standard gradient-
descent type algorithm. The outer loop exchanges the 
training data set and the validation data set and 
initiates inner loop training. The whole training 
process comprises a number of outer loop training 
cycles, and the results of previous outer loop training 
cycles are used to initialize the following outer loop 
cycle. Since in each outer loop cycle only one data set 
is directly used in training to update the weights, the 
final training error of the new method will be 
distributed within a close neighborhood of the 
minimal error. The motivations behind this method 
are summarized as follows: 
 
1). Although all available training algorithms are 
designed to minimize the cost function of one set of 
data, in practice, two or more disjoint data sets will 
have been collected.  
 
2). The training data set can be of relatively small 
size and not able to cover all system dynamics. The 
reasons are that: 

§ In industrial process, most useful training 
data are acquired by filed tests and 
experiments. As a result the collected data is 
unlikely to cover whole system dynamics;  

§ In many industrial processes, operating 
conditions vary from time to time;  

§ Industrial processes are always corrupted 
with white/colored noise and unexpected 
disturbances.  

In the above situations an early stopping technique is 
quite useful. In our method, training is performed 
using two data sets and the training process is able to 
automatically ensure that the final training error is 
distributed within a close neighborhood of the 
minimal error over the whole training data. 
 
3). Although the cross-validated early stopping 
technique is useful when the training data is 
insufficient to reflect the whole system dynamics. It 
suffers several problems, 

§ The time to stop the training process largely 
depends on the validation data set.  

§ When there is only one data set is available 
for training, there is no well-recognized 

guideline on how to split the supervised data 
into training data and validation data sets. 

§ Training may get stuck in local minima.  
§ The training may stop too early.  

Since the validation data is not explicitly used in 
training, there is no guarantee that an appropriate 
tradeoff is made between training data and validation 
data. In the new method, training is performed over 
the two data sets separately, and the results acquired 
in previous trainings are used as initial conditions for 
subsequent training.  
 

4). It is understood that there are multi-local 
minimums in the error space and that the training 
process can stick in a local minimum before reaching 
the global minimum. To avoid this situation, a 
conventional means is to train the network 
repeatedly, which is time consuming and there is no 
guarantee that the final result will improve 
significantly. In the proposed method, the solution is 
to add perturbation to the initial values of the weights 
in each outer loop training cycle. In order to avoid an 
excessive computational burden, the stop criteria for 
the inner and outer loops are designed so that the 
overall cost function will decrease along some 
predefined trajectory.   
 

The paper is organized as follows. In section 2, key 
features in this new method are introduced, the 
training algorithm is proposed. Further discussions 
are made on how to choose training parameters. In 
section 3, simulations are made using the improved 
algorithm. Section 4 is the conclusion.  
 

 
2. THE TRAINING ALGORITHM 

 
 

2.1 The training algorithm  
 

In this paper, the multi-layer perceptron (MLP) 
neural network is used. Two typical activation 
functions φ  are the sigmoid function and the 

hyperbolic tangent function. Most MLP training 
algorithms are recursive learning algorithms based 
on Newton-type gradient-descent techniques. Recent 
advances in training used second-order optimization 
techniques. Typically, they involve the calculation of 
at least an approximate Hessian Matrix associated 
with the function to be optimized. Some popular 
update algorithms are LM (Levenberg-Marquart) 
method, Broyden-Fletcher-Golfarb-Shanno (BFGS) 
algorithm, the scaled conjugate gradient algorithm, 
etc. (Hertz, and Krogh, 1991; Hagen and Menhaj, 
1994). In this paper, the LM method will be used. 
 
Suppose we have a network model with p input nodes 
and q output nodes. Two data sets are collected for 

training, i.e. 1Z and 2Z  which contain N1 and N2 

data points respectively,  
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where 1i1 N1,2,...,i ,z =  and 2i2 N1,2,...,i ,z =  are 

data points in the two data sets; 

1i1 N1,2,...,j p,1,2,...,i ),j(u ==  and 

2i2 N1,2,...,j p,1,2,...,i ),j(u ==   are input values in 

the two data sets; 1i1 N1,2,...,j q,1,2,...,i ),j(t ==  

and 2i2 N1,2,...,j q,1,2,...,i ),j(t ==  are the output 

targets. 
 

Then the cost functions for these two data sets are 
defined as: 
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where 1i1 N1,2,...,j q,1,2,...,i ),j(y ==  and 

2i2 N1,2,...,j q,1,2,...,i ),j(y ==  are the outputs of 

the network model given inputs from the two training 
data sets, q is the number of output nodes, ω  is the 
adjustable weight vector, 1ε  and 2ε  are error 

vectors. 
 

The cost function of these two data sets is defined as 
 

2
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where 210 ZZZ += , 0ε  is the error vector. A 

recursive training algorithm to update the weights 
with respect to the cost function defined in form of 
(4), (5) or (6) may take the following form, 
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where µ  is the step size which is determined by 

some search along the indicated line. H is some 

positive definite matrix, 0,1,2j ,E '
j =  is the first 

derivative of the cost function of either (4), (5) or (6) 
with respect to the weights. The initial value for ω  
could be some prior guess. In practical, 0ω  is 

generated randomly.  
 

In particular, for the LM approach, (7) will take the 
form of   
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where )(P
j

j ω

ε

∂

∂
= , I is an identity matrix, 

0,1,2j ,j =ε is defined in (4), (5) and (6). 

 

In order to help better understanding of the algorithm 
to be followed, the key features in this method are 
introduced in the following as a start:  
 

§ The training algorithm comprises two 
training loops, namely inner loop and outer loop. The 
inner loop performs network training over one of the 
two data sets using LM method. For example, if data 
set 1Z is used in training, then network weights are 

updated in the inner loop as follows: 
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§ The outer loop performs training repetitively 
over the two data sets separately. For example, if data 
set 1Z is used for training in the ith outer loop cycle, 

then 2Z  will be used for training in the (i+1)th outer 

loop cycle. 
§ Each outer loop cycle performs a complete 

cross-validated early stopping type training over one 
of the two data sets, and training within an outer loop 
cycle is implemented in the inner loop.  

§ The initial values of weights for an outer 
loop training cycle comprises two parts, one part uses 
the previous training results, and the other part is a 
disturbance, which is designed to help the training 
avoid getting stuck in local minima. Suppose we 
want to initialize the kth outer loop training cycle, the 

initial values for weights )0(
kω  are calculated as: 

γβωωαω /])([ kbest1k
)0(

k ℵ++= ∗∗
−   (10) 

where ∗
bestω is the best solution in previous (k-1) 

outer loop training cycles, ∗
−1kω is the solution of the 

(k-1)th outer loop training cycle, kℵ is a uniformly 

distributed random matrix with the same dimension 
of ω , and the upper and lower bound of values of 
entries in kℵ are the maximal and minimal values of 

entries in matrix )( *
best

*
1k ωω +−  . For the first outer 

loop cycle, values for the entries in these matrices are 
generated randomly. 1 ],1,0[, >∈ γβα are training 

parameters. α  and β  represent the percentages of 

previous training results and the disturbance item in 
the initial value of weights.  

§ In the new method the training error 
);Z(E 00 ω  decreases as training proceeds. An ideal 

situation is that this training error can decrease along 
a pre-defined trajectory as outer loop training 
proceeds. In order to do so, the target for an outer 
loop training cycle, e.g. kth outer loop cycle, is set to 
be: 
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where )i(
kω are the weights derived from the current 

ith iteration within the current kth outer loop training 

cycle, ∗
−1kω is the solution of the (i-1)th outer loop 

training cycle, )1 ,0(∈η is a training parameter and 

has been chosen to be 0.1 in practice. However, the 
inner loop training within an outer loop cycle can not 
continue infinitely if (11) is not achieved. In this 
case, the cross-validated early stop criterion for the 
inner loop training within an outer loop cycle is 
applied: 
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where )i(
kω , )1i(

k
−ω are the weights derived from the 

current ith iteration and the last (i-1)th iteration within 
the current kth outer loop cycle, 2Z is the validation 

set that is not directly involved in training in current 
outer loop training cycle to update the weights. In 
conclusion, the inner loop training within an outer 
loop cycle will stop if either (11) or (12) is satisfied.  

§ The whole training process comprises a 
number of outer loop cycles, the criteria to stop the 
whole training process are defined as: 

max
outNk >    (13) 

and  

 min
*
k00 E);Z(E ≤ω   (14) 

where k is the number of outer loop training cycles; 
max
outN is the maximal outer loop cycles which can be 

a number between 10 to 20; *
kω  is the result of the 

current outer loop training cycle, minE  is the user 

defined desirable training error. In conclusion, the 
whole process will stop if (13) or (14) is satisfied. 
 
Algorithm:  MLP training with two sets of data 
 
Step 1. Initialization phase.  
1) Select two training data sets. 

2) Let 1Z always denote the training data set in an 

outer loop cycle, 2Z denotes the validation data 

set used in (12) to stop the training process in 
an outer loop cycle. 

3) Select a gradient-descent type training 
algorithm for the inner loop training, in this 
paper the LM method is used.  

4) Determine the parameters γβα  ,,  in (10). They 

are always chosen to be 67.0=α , 33.0=β , 

4=γ . 

5) Determine maximal outer loop training cycles 
max
outN , it has been chosen to be 10 in all our 

examples. Set the desired training error minE . 

6) ∗
−1kω  for k=1 is generated randomly, 

let ∗
−

∗ = 1kbest ωω  for k=1, and calculate 

);Z(E best0
∗ω .   

7) Calculate the initial values of weights as (10) 
for the first outer loop training cycle, and set the 
number of outer loop cycle k=1.   

Step 2. An outer loop cycle training phase.  
Training is implemented within the inner loop:  
a) The network weights are updated using (9).  
b) After each training epoch in the inner loop 

training, check whether or not the criterions 
(11) or (12) are met. If either (11) or (12) is 
satisfied, stop inner loop training and the 
current outer loop cycle is terminated, go to step 
3. Otherwise, go to a) and inner loop training 
continues. 

Step 3. Update phase. 
1)  If (11) is satisfied, or (12) is satisfied together 

with );Z(E);Z(E best0k0
∗∗ < ωω , then update 

intermediate variables ∗
−1kω , 

);Z(E *
1k0 −ω , ∗

best ω , );Z(E *
best0 ω  as 

follows:  
 

• ∗∗
− = k1k ωω , and ∗∗ = kbest ωω ; 

• );Z(E);Z(E k01k0
∗∗

− = ωω , 

and 

• );Z(E);Z(E k0best0
∗∗ = ωω . 

2). If (12) is satisfied but 

);Z(E);Z(E 1k0
)best(

0
∗

+> ωω , then ∗∗
− = k1k ωω , 

and );Z(E);Z(E k01k0
∗∗

− = ωω .  

Step 4. Check phase. If either (13) or (14) is satisfied, 

the whole training process stops and ∗
best ω  is the 

solution. Otherwise, go to step 5. 
Step 5. Preparation phase. Exchange the training 
data set and the validation data set, i.e. if one data set 
is used as the training data set in last outer loop 
training cycle, then it will be used as the validation 
data set for the following cycle. Compute the initial 
values of weights for the following outer loop cycle 
according to (10). 1kk += , and go to Step 2. 
 
 

2.2 Selection of training parameters 
 

In this training algorithm, key training parameters 
have to be determined. 
• α , β , γ  in (10). α  and β  represent the 

percentages of previous training results and the 
disturbance item in the initial values, therefore 

]1,0[, ∈βα and 1=+ βα . If 1=α  and 0=β , 

then no disturbance is added, and training in an 
outer loop cycle is solely performed on the base of 
previous outer cycle results, the computation 



complexity is reduced, but the training can stick at 
local minima. However, if 0=α  and 1=β , 

previous outer loop training information is not used 
and the training process approximates to a number 
of independent cross-validated early stopping 
training processes and the computation complexity 
can increase significantly. Therefore, α  and β  are 

chosen so that the disturbance is large enough to 
help training escape a local minina, but does not 
fully mask the values of previous training results. It 
has been found that 67.0=α , 33.0=β  is the best 

choice, Coincidently it uses the golden 
segmentation principle to produce the initial value. 
γ  is used to ensure that the searching for weights 

always starts from small values. In practice, 4=γ . 

• The maximal outer loop cycles, max
outN determines 

how many cross-validated early stopping type 
training are performed to get a global optimal 

solution. The larger max
outN is, the more complex the 

computation becomes. According to (11), if 
1.0=η , after 10 outer loop cycle, the training error 

is expected to reduce to 1010− times the initial 
training error. Although in practice, this can be 

hardly achieved, it has been found that 10N max
out =  

is a good choice, and further increase of max
outN may 

not improve the training solution significantly, but 
will increase the computational burden.  

 
 

3. SIMULATION EXAMPLES 
 
The proposed method has been tested on various 
artificial nonlinear dynamic systems, where the 
training data set is of relatively small size and does 
not cover all system dynamics. All simulations are 
performed using MATLAB, MathWorks, Inc., on a 
Pentium III PC with machine frequency of 700MHz. 
 

For each of the following examples, three data sets 
are used. The first two data sets can be used for 
training, and their sizes are relatively small. The 
third independent data set is used to test the 
generalization performance, and is not involved in 
training explicitly or implicitly, and generally 4 to 8 
times larger than the other two data sets. 
Consequently, the following examples test the 
generalization performance of produced networks. 
This is typical in modeling/simulating nonlinear 
dynamic systems, where once the model is built up, it 
will be tested or used for a rather long period of time 
under varying conditions. For the reason of 
comparison, in each modeling/simulation example, 
three training methods are used: 
 

• Method 1: The new method proposed in this 
paper. In all examples, the maximal outer loop cycle 
number is chosen to be 10. 

• Method 2: The cross-validated early stopping 
technique, i.e. the training will stop once the error on 
the validation data starts to rise instead of decrease; 
• Method 3: The first two data sets are used for 
training, i.e. the two data sets are combined as one 
training data set and the training process will stop 
only when training error cannot make further 
decrease. 
 

Example 1 
 

A two-input/one-output MLP is used to 
model/simulate the dynamics of the following 
nonlinear system:  
 

2)1t(y1

)1t(y9.0)1t(u
)t(y

−+

−−−
=   (15) 

where )t(y  and )1t(y − are system outputs at time 

instant t and t-1 respectively, )1t(u − is the system 

input at time instant t-1. The system input )t(u is 

uniformly distributed within the range of  [0, 1]. 
 
The MLP model is a (2,10,1) network, which has 10 
hidden nodes; 2 inputs: )1t(y − and )1t(u − ; one 

output: )t(y .  Each of the two training data sets has 

50 data points respectively. The generalization data 
set has 400 data points. These data sets are all 
generated by simulating (15) with test signal )t(u of 

range [0, 1].   
 

Table 1 Training results for example 1 
 

 
 

Table 1 lists the training results by the three training 
methods. In table 1, ‘Iterations’ is the total number of 
iterations using (9) to update the network weights; 
‘Flops’ is used to account the total number of float 
point operations in a computation process (In Matlab 
additions and subtractions are one flop if real and two 
if complex. Multiplications and divisions count one 
flop each if the result is real and six flops if it is not). 
Obviously, Method 1 is able to produce far better 
generalization performance, and using early stopping 
technique only once will not produce a network with 
better performance. The result of method 3 shows 
that when training data sets are small, even use all 
training data sets, the network still can still produce 
bias. 

 Generalization 
Error 

Iterations Flops 

Method 
1 

51089.5 −×  246 71036.9 ×  

Method 
2 

11048.1 −×  6 61027.2 ×  

Method 
3 

31028.2 −×  200 81013.1 ×  



Example 2 
 
A four-input/one-output MLP is used to 
model/simulate the dynamics of the following 
nonlinear system: 
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where )t(y , )1t(y −  and )2t(y − are system 

outputs in time t, t-1, t-2 respectively; )1t(u − , 

)2t(u − are system inputs in time t-1, t-2; )t(e is 

white noise of range of [0, 0.01].   
 
The MLP model is (4,10,1), which has 10 hidden 
nodes, 4 inputs: )1t(u − , )2t(u − , )1t(y − , 

)2t(y − , and one output: )t(y . Each of the two 

training data sets has 50 data points respectively. 
These two training data sets are generated by 
simulating (16) with input signal )t(u of range [-0.5, 

0.5]. The generalization data set has 400 data points 
that are generated by simulating (16) with input 
signal )t(u of range [-0.7, 0.7]. Apparently, the two 

training data sets do not cover the whole range of 
values in the generalization data. Data in these three 
sets are corrupted with white noise. 
 

The training process using method 1 is depicted in 
Fig.1 and results using the three training methods are 
summarized in table 2. According to Fig. 1, both 
training error and generalization error can approach 
different local minima in different outer loop cycles. 
 

Table 2 Training result for example 2 
 

 Generalization 
Error 

Iterations Flops 

Method 
1 

21038.6 −×  59 71070.4 ×
 

Method 
2 

11012.4 −×  2 61021.2 ×
 

Method 
3 

1.40 30 71045.3 ×
 

  

 
4. CONCLUSION 

 
In this paper, MLP based nonlinear dynamic system 
modeling has been studied, an improved method has 
been proposed for MLP training with two sets of 
data, which is able to give better generalization 
performance in the situation that the available 
training data set is of small size and does not cover 
all system dynamics. Simulation examples have 
shown the merit of this method. 
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