

MLP BASED NONLINEAR DYNAMIC SYSTEM MODELING
THROUGH IMPROVED TRAINING ALGORITHM

Kang Li, Steve Thompson

School of Mechanical & Manufacturing Engineering
Queen’s University Belfast

Ashby Building, Stranmillis Rd., Belfast BT9 5AH, UK

Abstract: Multi-Layer Perceptron network modeling for nonlinear dynamic systems is
studied. The situations that only a relatively small number of training data is available
and that the training data does not cover all system dynamics are mainly concerned.
An improved method is proposed by training with two sets of data, which is shown to
give better generalization performance in the above-mentioned circumstances.
Copyright @2002 IFAC

Keyword: neural networks, training, generalization, nonlinear systems, dynamic
modeling.

1. INTRODUCTION

The main objective in nonlinear dynamic system
modeling using artificial neural networks is to obtain
a network model with good generalization
performance (Hertz, and Krogh, 1991; Narenda and
Parthasarathy, 1990; Qin et al, 1992).Generalization
refers to the ability to predict unseen data. It is
understood that in neural network training, if the
training stops when the training error reaches the
minimum, the generalization performance can be
poor (Prechelt, 1998). Various solutions to this
problem are available, including cross-validated early
stopping technique and regularization (Poggio and
Girosi, 1990; Prechelt, 1998). In cross-validated early
stopping technique, two data sets are involved, one is
used for training, and the other is used for validation.
The cross-validated early stopping technique is
implemented as follows: the behavior of the trained
network is evaluated by the validation data and the
training will stop at the point that the error on the
validation data set starts to rise instead of decreasing.
Regularization technique is in fact a constrained

training process, where a penalty term (E∆) is added
to the cost function E which restricts the variance of

the model. The modified cost function E
~

 becomes:

 EEE
~

∆λ+= (1)
where λ is a scalar that determines the influence of

E∆ .

It has been proved that early stopping is equivalent to
zero-order regularization (Poggio and Girosi, 1990);
there is an analogy between the number of iterations
and the regularization parameter λ in (1). The
difficulty with regularization is in choosing the
regularization parameter. In order to determine a
possible regularization parameter, additional
computation and inference based on other criteria are
required. In general the early stopping technique is
widely used because it is simple to understand and
implement and has been reported to be superior to
regularization methods in many cases.

In this paper, an improved method of training neural
networks is proposed based on the previous result

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain

made by the authors (Li and Thompson 2000). To
achieve better generalization performance in case
that the available training data set is of relatively
small size and does not cover whole system
dynamics, two sets of data are used. The proposed
method adopts the core concept in the cross-validated
early stopping technique. The main difference
between the new method and the early stopping
technique is that in the new method both data sets are
explicitly involved in training to update the weights.
In order to do so, two training loops, namely an inner
loop and an outer loop, are introduced into the new
method. The inner loop performs cross-validated
early stopping training using a standard gradient-
descent type algorithm. The outer loop exchanges the
training data set and the validation data set and
initiates inner loop training. The whole training
process comprises a number of outer loop training
cycles, and the results of previous outer loop training
cycles are used to initialize the following outer loop
cycle. Since in each outer loop cycle only one data set
is directly used in training to update the weights, the
final training error of the new method will be
distributed within a close neighborhood of the
minimal error. The motivations behind this method
are summarized as follows:

1). Although all available training algorithms are
designed to minimize the cost function of one set of
data, in practice, two or more disjoint data sets will
have been collected.

2). The training data set can be of relatively small
size and not able to cover all system dynamics. The
reasons are that:

§ In industrial process, most useful training
data are acquired by filed tests and
experiments. As a result the collected data is
unlikely to cover whole system dynamics;

§ In many industrial processes, operating
conditions vary from time to time;

§ Industrial processes are always corrupted
with white/colored noise and unexpected
disturbances.

In the above situations an early stopping technique is
quite useful. In our method, training is performed
using two data sets and the training process is able to
automatically ensure that the final training error is
distributed within a close neighborhood of the
minimal error over the whole training data.

3). Although the cross-validated early stopping
technique is useful when the training data is
insufficient to reflect the whole system dynamics. It
suffers several problems,

§ The time to stop the training process largely
depends on the validation data set.

§ When there is only one data set is available
for training, there is no well-recognized

guideline on how to split the supervised data
into training data and validation data sets.

§ Training may get stuck in local minima.
§ The training may stop too early.

Since the validation data is not explicitly used in
training, there is no guarantee that an appropriate
tradeoff is made between training data and validation
data. In the new method, training is performed over
the two data sets separately, and the results acquired
in previous trainings are used as initial conditions for
subsequent training.

4). It is understood that there are multi-local
minimums in the error space and that the training
process can stick in a local minimum before reaching
the global minimum. To avoid this situation, a
conventional means is to train the network
repeatedly, which is time consuming and there is no
guarantee that the final result will improve
significantly. In the proposed method, the solution is
to add perturbation to the initial values of the weights
in each outer loop training cycle. In order to avoid an
excessive computational burden, the stop criteria for
the inner and outer loops are designed so that the
overall cost function will decrease along some
predefined trajectory.

The paper is organized as follows. In section 2, key
features in this new method are introduced, the
training algorithm is proposed. Further discussions
are made on how to choose training parameters. In
section 3, simulations are made using the improved
algorithm. Section 4 is the conclusion.

2. THE TRAINING ALGORITHM

2.1 The training algorithm

In this paper, the multi-layer perceptron (MLP)
neural network is used. Two typical activation
functions φ are the sigmoid function and the

hyperbolic tangent function. Most MLP training
algorithms are recursive learning algorithms based
on Newton-type gradient-descent techniques. Recent
advances in training used second-order optimization
techniques. Typically, they involve the calculation of
at least an approximate Hessian Matrix associated
with the function to be optimized. Some popular
update algorithms are LM (Levenberg-Marquart)
method, Broyden-Fletcher-Golfarb-Shanno (BFGS)
algorithm, the scaled conjugate gradient algorithm,
etc. (Hertz, and Krogh, 1991; Hagen and Menhaj,
1994). In this paper, the LM method will be used.

Suppose we have a network model with p input nodes
and q output nodes. Two data sets are collected for

training, i.e. 1Z and 2Z which contain N1 and N2

data points respectively,

{ }






=

==

})]i(t ...)i(t)i(t[;)]i(u ...)i(u)i(u{[z

N1,2,...,i ,zZ
T

q11211
T

p11211i1

1i11

 (2)

{ }






=

==

})]i(t ...)i(t)i(t[;)]i(u ...)i(u)i(u{[z

N1,2,...,i ,zZ
T

q22221
T

p22221i2

2i22

 (3)
where 1i1 N1,2,...,i ,z = and 2i2 N1,2,...,i ,z = are

data points in the two data sets;

1i1 N1,2,...,j p,1,2,...,i),j(u == and

2i2 N1,2,...,j p,1,2,...,i),j(u == are input values in

the two data sets; 1i1 N1,2,...,j q,1,2,...,i),j(t ==

and 2i2 N1,2,...,j q,1,2,...,i),j(t == are the output

targets.

Then the cost functions for these two data sets are
defined as:

2
1

1N

1j

q

1i

2
i1i111))j(t)j(y();Z(E εω =∑ ∑ −=

= =
 (4)

2
2

2N

1j

q

1i

2
i2i222))j(t)j(y();Z(E εω =∑ ∑ −=

= =
(5)

where 1i1 N1,2,...,j q,1,2,...,i),j(y == and

2i2 N1,2,...,j q,1,2,...,i),j(y == are the outputs of

the network model given inputs from the two training
data sets, q is the number of output nodes, ω is the
adjustable weight vector, 1ε and 2ε are error

vectors.

The cost function of these two data sets is defined as

2
0221100);Z(E);Z(E);Z(E εωωω =+= (6)

where 210 ZZZ += , 0ε is the error vector. A

recursive training algorithm to update the weights
with respect to the cost function defined in form of
(4), (5) or (6) may take the following form,







=

=−=+

0
)0(

)i('
j

)i()i()i()1i(1,2,0j),(EH

ωω

ωµωω
(7)

where µ is the step size which is determined by

some search along the indicated line. H is some

positive definite matrix, 0,1,2j ,E '
j = is the first

derivative of the cost function of either (4), (5) or (6)
with respect to the weights. The initial value for ω
could be some prior guess. In practical, 0ω is

generated randomly.

In particular, for the LM approach, (7) will take the
form of

0,1,2j

)(P)IP()i(
j

T
j

1T
j

T
j

)i()i()1i(

=

+−= −+ ωελΡµωω (8)

where)(P
j

j ω

ε

∂

∂
= , I is an identity matrix,

0,1,2j ,j =ε is defined in (4), (5) and (6).

In order to help better understanding of the algorithm
to be followed, the key features in this method are
introduced in the following as a start:

§ The training algorithm comprises two
training loops, namely inner loop and outer loop. The
inner loop performs network training over one of the
two data sets using LM method. For example, if data
set 1Z is used in training, then network weights are

updated in the inner loop as follows:

)(P)IP()i(
1

T
1

1
1

T
1

)i()i()1i(ωελΡµωω −+ +−= (9)

§ The outer loop performs training repetitively
over the two data sets separately. For example, if data
set 1Z is used for training in the ith outer loop cycle,

then 2Z will be used for training in the (i+1)th outer

loop cycle.
§ Each outer loop cycle performs a complete

cross-validated early stopping type training over one
of the two data sets, and training within an outer loop
cycle is implemented in the inner loop.

§ The initial values of weights for an outer
loop training cycle comprises two parts, one part uses
the previous training results, and the other part is a
disturbance, which is designed to help the training
avoid getting stuck in local minima. Suppose we
want to initialize the kth outer loop training cycle, the

initial values for weights)0(
kω are calculated as:

γβωωαω /])([kbest1k
)0(

k ℵ++= ∗∗
− (10)

where ∗
bestω is the best solution in previous (k-1)

outer loop training cycles, ∗
−1kω is the solution of the

(k-1)th outer loop training cycle, kℵ is a uniformly

distributed random matrix with the same dimension
of ω , and the upper and lower bound of values of
entries in kℵ are the maximal and minimal values of

entries in matrix)(*
best

*
1k ωω +− . For the first outer

loop cycle, values for the entries in these matrices are
generated randomly. 1],1,0[, >∈ γβα are training

parameters. α and β represent the percentages of

previous training results and the disturbance item in
the initial value of weights.

§ In the new method the training error
);Z(E 00 ω decreases as training proceeds. An ideal

situation is that this training error can decrease along
a pre-defined trajectory as outer loop training
proceeds. In order to do so, the target for an outer
loop training cycle, e.g. kth outer loop cycle, is set to
be:

);Z(E);Z(E 1k00
)i(

k00
∗
−< ωηω (11)

where)i(
kω are the weights derived from the current

ith iteration within the current kth outer loop training

cycle, ∗
−1kω is the solution of the (i-1)th outer loop

training cycle,)1 ,0(∈η is a training parameter and

has been chosen to be 0.1 in practice. However, the
inner loop training within an outer loop cycle can not
continue infinitely if (11) is not achieved. In this
case, the cross-validated early stop criterion for the
inner loop training within an outer loop cycle is
applied:

);Z(E);Z(E)1i(
k22

)i(
k22

−> ωω (12)

where)i(
kω ,)1i(

k
−ω are the weights derived from the

current ith iteration and the last (i-1)th iteration within
the current kth outer loop cycle, 2Z is the validation

set that is not directly involved in training in current
outer loop training cycle to update the weights. In
conclusion, the inner loop training within an outer
loop cycle will stop if either (11) or (12) is satisfied.

§ The whole training process comprises a
number of outer loop cycles, the criteria to stop the
whole training process are defined as:

max
outNk > (13)

and

 min
*
k00 E);Z(E ≤ω (14)

where k is the number of outer loop training cycles;
max
outN is the maximal outer loop cycles which can be

a number between 10 to 20; *
kω is the result of the

current outer loop training cycle, minE is the user

defined desirable training error. In conclusion, the
whole process will stop if (13) or (14) is satisfied.

Algorithm: MLP training with two sets of data

Step 1. Initialization phase.
1) Select two training data sets.

2) Let 1Z always denote the training data set in an

outer loop cycle, 2Z denotes the validation data

set used in (12) to stop the training process in
an outer loop cycle.

3) Select a gradient-descent type training
algorithm for the inner loop training, in this
paper the LM method is used.

4) Determine the parameters γβα ,, in (10). They

are always chosen to be 67.0=α , 33.0=β ,

4=γ .

5) Determine maximal outer loop training cycles
max
outN , it has been chosen to be 10 in all our

examples. Set the desired training error minE .

6) ∗
−1kω for k=1 is generated randomly,

let ∗
−

∗ = 1kbest ωω for k=1, and calculate

);Z(E best0
∗ω .

7) Calculate the initial values of weights as (10)
for the first outer loop training cycle, and set the
number of outer loop cycle k=1.

Step 2. An outer loop cycle training phase.
Training is implemented within the inner loop:
a) The network weights are updated using (9).
b) After each training epoch in the inner loop

training, check whether or not the criterions
(11) or (12) are met. If either (11) or (12) is
satisfied, stop inner loop training and the
current outer loop cycle is terminated, go to step
3. Otherwise, go to a) and inner loop training
continues.

Step 3. Update phase.
1) If (11) is satisfied, or (12) is satisfied together

with);Z(E);Z(E best0k0
∗∗ < ωω , then update

intermediate variables ∗
−1kω ,

);Z(E *
1k0 −ω , ∗

best ω ,);Z(E *
best0 ω as

follows:

• ∗∗
− = k1k ωω , and ∗∗ = kbest ωω ;

•);Z(E);Z(E k01k0
∗∗

− = ωω ,

and

•);Z(E);Z(E k0best0
∗∗ = ωω .

2). If (12) is satisfied but

);Z(E);Z(E 1k0
)best(

0
∗

+> ωω , then ∗∗
− = k1k ωω ,

and);Z(E);Z(E k01k0
∗∗

− = ωω .

Step 4. Check phase. If either (13) or (14) is satisfied,

the whole training process stops and ∗
best ω is the

solution. Otherwise, go to step 5.
Step 5. Preparation phase. Exchange the training
data set and the validation data set, i.e. if one data set
is used as the training data set in last outer loop
training cycle, then it will be used as the validation
data set for the following cycle. Compute the initial
values of weights for the following outer loop cycle
according to (10). 1kk += , and go to Step 2.

2.2 Selection of training parameters

In this training algorithm, key training parameters
have to be determined.
• α , β , γ in (10). α and β represent the

percentages of previous training results and the
disturbance item in the initial values, therefore

]1,0[, ∈βα and 1=+ βα . If 1=α and 0=β ,

then no disturbance is added, and training in an
outer loop cycle is solely performed on the base of
previous outer cycle results, the computation

complexity is reduced, but the training can stick at
local minima. However, if 0=α and 1=β ,

previous outer loop training information is not used
and the training process approximates to a number
of independent cross-validated early stopping
training processes and the computation complexity
can increase significantly. Therefore, α and β are

chosen so that the disturbance is large enough to
help training escape a local minina, but does not
fully mask the values of previous training results. It
has been found that 67.0=α , 33.0=β is the best

choice, Coincidently it uses the golden
segmentation principle to produce the initial value.
γ is used to ensure that the searching for weights

always starts from small values. In practice, 4=γ .

• The maximal outer loop cycles, max
outN determines

how many cross-validated early stopping type
training are performed to get a global optimal

solution. The larger max
outN is, the more complex the

computation becomes. According to (11), if
1.0=η , after 10 outer loop cycle, the training error

is expected to reduce to 1010− times the initial
training error. Although in practice, this can be

hardly achieved, it has been found that 10N max
out =

is a good choice, and further increase of max
outN may

not improve the training solution significantly, but
will increase the computational burden.

3. SIMULATION EXAMPLES

The proposed method has been tested on various
artificial nonlinear dynamic systems, where the
training data set is of relatively small size and does
not cover all system dynamics. All simulations are
performed using MATLAB, MathWorks, Inc., on a
Pentium III PC with machine frequency of 700MHz.

For each of the following examples, three data sets
are used. The first two data sets can be used for
training, and their sizes are relatively small. The
third independent data set is used to test the
generalization performance, and is not involved in
training explicitly or implicitly, and generally 4 to 8
times larger than the other two data sets.
Consequently, the following examples test the
generalization performance of produced networks.
This is typical in modeling/simulating nonlinear
dynamic systems, where once the model is built up, it
will be tested or used for a rather long period of time
under varying conditions. For the reason of
comparison, in each modeling/simulation example,
three training methods are used:

• Method 1: The new method proposed in this
paper. In all examples, the maximal outer loop cycle
number is chosen to be 10.

• Method 2: The cross-validated early stopping
technique, i.e. the training will stop once the error on
the validation data starts to rise instead of decrease;
• Method 3: The first two data sets are used for
training, i.e. the two data sets are combined as one
training data set and the training process will stop
only when training error cannot make further
decrease.

Example 1

A two-input/one-output MLP is used to
model/simulate the dynamics of the following
nonlinear system:

2)1t(y1

)1t(y9.0)1t(u
)t(y

−+

−−−
= (15)

where)t(y and)1t(y − are system outputs at time

instant t and t-1 respectively,)1t(u − is the system

input at time instant t-1. The system input)t(u is

uniformly distributed within the range of [0, 1].

The MLP model is a (2,10,1) network, which has 10
hidden nodes; 2 inputs:)1t(y − and)1t(u − ; one

output:)t(y . Each of the two training data sets has

50 data points respectively. The generalization data
set has 400 data points. These data sets are all
generated by simulating (15) with test signal)t(u of

range [0, 1].

Table 1 Training results for example 1

Table 1 lists the training results by the three training
methods. In table 1, ‘Iterations’ is the total number of
iterations using (9) to update the network weights;
‘Flops’ is used to account the total number of float
point operations in a computation process (In Matlab
additions and subtractions are one flop if real and two
if complex. Multiplications and divisions count one
flop each if the result is real and six flops if it is not).
Obviously, Method 1 is able to produce far better
generalization performance, and using early stopping
technique only once will not produce a network with
better performance. The result of method 3 shows
that when training data sets are small, even use all
training data sets, the network still can still produce
bias.

 Generalization
Error

Iterations Flops

Method
1

51089.5 −× 246 71036.9 ×

Method
2

11048.1 −× 6 61027.2 ×

Method
3

31028.2 −× 200 81013.1 ×

Example 2

A four-input/one-output MLP is used to
model/simulate the dynamics of the following
nonlinear system:

)t(e
)2t(y)1t(y1

)2t(u)1t(u
2.0)t(y

22
+

−+−+

−−
= (16)

where)t(y ,)1t(y − and)2t(y − are system

outputs in time t, t-1, t-2 respectively;)1t(u − ,

)2t(u − are system inputs in time t-1, t-2;)t(e is

white noise of range of [0, 0.01].

The MLP model is (4,10,1), which has 10 hidden
nodes, 4 inputs:)1t(u − ,)2t(u − ,)1t(y − ,

)2t(y − , and one output:)t(y . Each of the two

training data sets has 50 data points respectively.
These two training data sets are generated by
simulating (16) with input signal)t(u of range [-0.5,

0.5]. The generalization data set has 400 data points
that are generated by simulating (16) with input
signal)t(u of range [-0.7, 0.7]. Apparently, the two

training data sets do not cover the whole range of
values in the generalization data. Data in these three
sets are corrupted with white noise.

The training process using method 1 is depicted in
Fig.1 and results using the three training methods are
summarized in table 2. According to Fig. 1, both
training error and generalization error can approach
different local minima in different outer loop cycles.

Table 2 Training result for example 2

 Generalization
Error

Iterations Flops

Method
1

21038.6 −× 59 71070.4 ×

Method
2

11012.4 −× 2 61021.2 ×

Method
3

1.40 30 71045.3 ×

4. CONCLUSION

In this paper, MLP based nonlinear dynamic system
modeling has been studied, an improved method has
been proposed for MLP training with two sets of
data, which is able to give better generalization
performance in the situation that the available
training data set is of small size and does not cover
all system dynamics. Simulation examples have
shown the merit of this method.

ACKNOWLEDGEMENTS

Acknowledgement is made to the British Coal
Utilisation Research Association and the UK
Department of Trade and Industry for a grant in aid
of this research but the views expressed are those of
the authors, and not necessarily those of BCURA or
the Department of Trade and Industry.

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Outer loop cycle
E

rr
o

r

Below l ine: Tra in ing error

Upper l ine: General izat ion error

Fig. 1 Training and generalization error with outer
 loop cycles

REFERENCES

Chng, E.S., S. Chen, and B. Mulgrew (1996).

Gradient radial basis function networks for
nonlinear and stationary time series prediction.
IEEE Trans. Neural Networks, 17, 190-194.

Hagen, M. T. and M.B. Menhaj (1994). Training
feedforward networks with the marquardt
algorithm. IEEE Trans. on Neural Networks, 5,
989-993.

Hertz, and A. Krogh (1991). Introduction to the
theory of neural computation, Reading, MA:
Addison-Wesley.

Li, K., S. Thompson (2000). Developing NOx
Emission Model for a Coal-fired Power
Generation Plant Using Artificial Neural
Networks. Proceedings of UKACC International
Conference on CONTROL 2000, Cambridge.

Narenda, K.S., K. Parthasarathy (1990).
Identification and control of dynamical systems
using neural networks. IEEE Trans. Neural
Networks,1, 4-27.

Qin, S., H. Su, and T.J. McAvoy (1992). Comparison
of four neural-net learning methods for dynamic
system identification. IEEE Trans. Neural
Networks, 3, 122-130

Poggio, T.and F. Girosi (1990). Regularization
algorithms for learning that are equivalent to
multilayer networks. Science, 247, 978-982.

Prechelt, L. (1998). Automatic early stopping using
cross validation: quantifying the criteria. Neural
Networks, 11, 761-767.

