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Abstract: This paper presents a new state-space identification framework for non-linear
systems. In particular, a state-space model structure is designed with the Group Method
of Data Handling type neural network. It is assumed that the neurons of the network
have tangensoidal activation functions. For such a network type, a new approach based
on a bounded-error set estimation technique is employed to estimate the parameters of the
network. The final part of this work contains an illustrative example regarding the application
of the proposed approach in the fault detection system.
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1. INTRODUCTION

The complexity and reliability demands of contem-
porary industrial systems and technological processes
requires the development of new fault diagnosis ap-
proaches. The early detection of faults may help to
avoid a system breakdown and material damages. Dur-
ing the last few decades many investigations have been
made using analytical approaches, based on mathe-
matical models. One of the most known structures
of the model-based fault diagnosis system is based
on the residual generation. An application of models
leads directly to the problem of system identification.
One way out of this problem is application of Arti-
ficial Neural Networks (ANNSs) (Duch et al., 2000).
The attractiveness of ANNs follows from the fact that
they are useful when there are no phenomenologi-
cal models available, i.e. the models which are built
with the physical consideration underlying the system

of interest. Such a situation causes that behavioural
models, i.e. the models which merely approximate the
observed behaviour, should be employed. In this case,
the model structure does not claim to correspond in
any more way to that of the system and the parameters
of the model have no physical meaning. Moreover, if
it is impossible to approximate the system behaviour
accurately using linear models, then the ANN seems
to be an appropriate tool. The direct identification
of state-space models has recently attracted research
attention (Van Overschee and De Moor, 1994). In gen-
eral the model designing can be viewed as the problem
of finding a mapping between the available input-
output data sequences and unknown parameters in a
user defined class of state-space models. Recent surge
of interest follows from some unique advantages of
state-space identification over the input-output based
approaches. A state-space description can be numeri-



cally better conditioned then an input-output descrip-
tion. Moreover, state-space model construction can be
readily extended to multi-input, multi-output system.
Thus, it seems especially attractive to develop a sys-
tem identification framework for non-linear system
with the application of ANNSs.

Unfortunately, in spite of the considerable usefulness
of ANNS, there are no efficient algorithms for select-
ing structures of the ANNs and hence many exper-
iments should be carried out to obtain an appropri-
ate configuration. In addition to that, the parameter
(weights) estimation problem is formulated usually as
a non-linear optimization one. Among the existing al-
gorithms, a few groups can be distinguished: gradient-
based algorithms (Hertz, Krogh and Palmer, 1991),
evolutionary algorithms (Angeline, 1995; Koza, 1992;
Michalewicz, 1996), stochastic algorithms (Walter
and Pronzato, 1997). Unfortunately, the training of the
ANN is usually an optimization problem of a mul-
timodal cost function. This means, that the gradient-
based algorithms usually find one of the unsatisfactory
local minima. To overcome this problem, it seems
desirable to use either stochastic or evolutionary al-
gorithms, possess global convergence properties. Un-
fortunately, the number of parameters of an ANN is
rather large, this leads to an increase in the computa-
tional burden, which makes the parameter estimation
process extremely time consuming. On the other hand,
there are many works which confirm the applicability
of the GMDH (Group Method of Data Handling) ap-
proach (Farlow, 1984; Ivakhnenko and Muller, 1995).
In this case, the structure of the network is succes-
sively increased by adding new neurons, according
to the prespecified criterion. The main advantage of
this approach is that the problem boils down to iden-
tifying the parameters of a single neuron only (prob-
lem decomposition). This means that, if the activation
function is invertible then the problem reduces to lin-
ear parameter estimation one. In this work, an ANN
whose neurons have tangensoidal activation functions
is considered. For such a network type, a state-space
identification scheme is proposed on a new approach
based on bounded-error set estimation (Fogel and
Huang, 1982; Maksarow and Norton, 1996a; Mak-
sarow and Norton, 1996b; Milanese et al., 1996) is
employed to the parameter estimation.

The paper is organized as follows. Section 2 presents
some elementary information concerning fault di-
agnosis. In Section 3 some basic notation and the
model representation used throughout the paper are
described. Section 4 presents the structure of the
GMDH type neural network. In Section 5 a concept of
parameter estimation via bounded-error estimation set
approach is described in detail. Moreover, it is shown
how to modify the above algorithm in order to attain
an automatic selection of the ,,appropriate” identifica-
tion data set. The final part of this work contains an
illustrative example, which confirms the effectiveness
of the proposed approach.

2. MODEL-BASED FAULT DIAGNOSIS

One of the best-known structures of the fault diagnosis
system is based on a model of a system being consid-
ered (Patton Frank and Clark, 2000) (Fig. 1). Model-
based fault diagnosis can be defined as the detection,
isolation and identification of faults in the system
based on a comparison of the system’s available mea-
surements, with information represented by the sys-
tem’s mathematical model (Patton and Chen, 1999).
Sometimes there are no mathematical description of
the diagnosed system or the high complexity of real
systems makes it impossible to perform it. In such
situations, the behavioural models, which merely ap-
proximate the system input-output behaviour, have to
be employed. One way out of this problem is the
application of GMDH type neural networks (Duch et
al., 2000).
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Fig. 1. The structure of a model-based FDI system

Using available input and output signals from the sys-
tem, the objective is to generate a bank of models.
The bank consist of GMDH neural models of the sys-
tem under nominal conditions and some faulty states.
Output signals estimated by the bank of models output
are used to generate the difference between the model
and system outputs. Such a difference signal is usually
called a residual and can be employed as a source of
information for Fault Detection and Isolation (FDI).
The residual signal should be normally close to zero
in the fault free mode, otherwise it should be distin-
guishably different from zero when a fault occurs. The
algorithm used to generate residuals is called a resid-
ual generator. The residual should ideally carry only
fault information. Faults are detected by setting a fixed
or variable threshold on a residual signal. A number
of residuals can be designed, each a heaving special
sensitivity to individual faults occurring in different
locations in the system. The decision making part can
be realized based on artificial intelligence approach
such as neural networks or fuzzy-logic.

3. MODEL DESCRIPTION

Let us consider the following class of non-linear
discrete-time systems

Tpr1 = alTg, ug) + wy,
Yp41 = CL41 + Vg

M



Thus, the state-space model of the system (1) can be
expressed as

Zpr1 = a(@y, ug), )

Ypy1 = CTp41-
where xp,Z; € R™ are the state vector and its
estimate, uy € R™ is the input vector, y,,, ¢, € R are
the observed output vector and its estimate, w j and vy,
are the process and measurement noises. The objective
is to obtain the vectors a(+) and ¢, given a set of input-
output measurements. Moreover, it is assumed the true
state vector x, is, in particular, unknown. Without loss
of generality, it is possible to assume that

a(zr, ur) =[a' (&x,ur),
al(:&ka Uy, a171(:&/€7 uk)); (3)
)

an(ﬁ:ka Uy, an71(®k7 uk)))]

Thus, the problem reduces to identifying non-linear
functions a’(-),i = 1,...,n, and the vector c. The
identification of non-linear functions a(-) can easily
be achieved by the following neuron structure

: T )

a'()=¢&(ry p), i=1,...,n, 4
where i = (&j,ux) for i = 1, and r}, =
(:%k,uk,ai_l(:%k,uk)) fort = 2,...,n is the k—th

input vector, p € R"» is the parameter vector and
&(+) is a hyperbolic tangent function. It should be also
pointed out that the order n of the model is in general
unknown and hence should be determined throughout
experiments. Moreover, each entry of the state vector,
i.e. &y, represents, in one way or another, the output of
the system.

i =y, for i=n, ®)
$2:$k1+5lz€, for 7::]_,..-,”_17 (6)
where
nj
) o ) )
8, =& (x, p) Y _pitortt, ™
=1

This means that each entry of the vector a(-) should be
obtained in such a way that each of the states should
be well-suited to the system output. After the network
designing procedure, knowing the state estimate and
using the least-square method it is possible to obtain
the vector ¢ by solving the following equation

¢ ¢ -1
=Yy, lZ mfl : ®)
k=1 k=1

4. SYSTEM IDENTIFICATION USING GMDH
NETWORKS

Successful identification depends on a proper selec-
tion of the model structure. In the case of ANNSs, the
problem reduces to the selection of the number of
layers and the number of neurons in a particular layer.
If the network obtained does not satisfy prespecified

requirements, then a new network structure is selected
and the parameter estimation problem is repeated once
again. Thus, it seems desirable to have a tool, which
can be employed to the automatic selection of the
ANN structure, based only on the measured data. One
way to solve this problem is to use the so called
GMDH type neural networks (Fig. 2). Based on the
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Fig. 2. Synthesis of the GMDH type neural network

number of available external inputs (u1, ..., ) , the
network grows its first layer of the neurons. The output
of each neuron is usually a combination of its inputs.
The activation function of the neuron is assumed to be
a tangensoidal function. The output of the neuron may
become the input to other neurons in the next layer.
During the training the GMDH network the number
of layers increases. Each time when a new layer is
added new neurons are introduced. The selection of
best performing neurons for their processing accuracy
is realized before the formed layer is added to the
network. The remaining neurons are removed. There
exist a few methods of performing the selection pro-
cedure:

o Constant population method is based on the se-
lection of g neurons, for which E (yr(rl)) reaches
the least values.

e Optimal population method is based on the re-
jection the neurons for which the defined qual-
ity index is larger than an arbitrarily determined
threshold e, (Fig. 3). Usually ey, is determined
separately for each layer.
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Fig. 3. The neuron selection in the layer

e Decreasing population method defines the maxi-
mum number of elements in a layer. The number
of the neurons in each layer decreases along with
the growth of the network.



In order to perform the model construction procedure
it is necessary to define the quality index. In this work,
this quality index has the following structure

ng

> Wyr — ye)?
O e — )

> i

k=1
where n; is the number of validation data, ¥, is the k-
th scalar measurement of the system output, however
ygz) « 18 the neuron output. Only well performing neu-
rons are preserved to build a new layer. Finally, when
additional layers do not improve the performance of
the network, the synthesis process is stopped. To avoid
the problem of overfitting the identification data, the
experimental input-output data is divided into two
sets, namely the identification and validation sets. This
means that the first set is used to estimate the pa-
rameters of the neurons, and the second one is used
to select best performing neurons. To obtain the final
structure of the network, all unnecessary neurons are
removed, leaving only those which are relevant to the
computation of the model output.

5. PARAMETER ESTIMATION VIA
BOUNDED-ERROR SET ESTIMATION
APPROACH

Let us reconsider the neuron structure
T
Ym,k(P) =T P (10

Yk (P) = E(Ym,k), (1)
Using the fact that £(+) is an invertible activation func-
tion, the parameter estimation problem can be solved
by means of the well developed linear parameter es-
timation approaches (Walter and Pronzato, 1997). In-
deed, the output error can be defined as

ey.k(P) = Yzk — Ym.r(P), (12)
where
Yz bk = f_l(yk)a (13)
Yk is the k—th scalar measurement of the system out-
put, and yp, x(p) is the corresponding neuron output.
The usual statistical parameter estimation framework
assumes that the data are corrupted by the errors which
can be modeled as realizations of independent random
variables, with a known or parameterized distribu-
tion. The estimator is usually designed based on the
well-known least-squares criterion which results in the
least-squares, or recursive least-squares, algorithm. A
more realistic approach is to assume that the errors
lie between given prior bounds, this is the case, for
example, for the data collected with an analogue-to-
digital converter or for measurements performed with
a sensor of a given type. In this case, the output error
is assumed to be bounded as follows

eztk <eyr(p) < 63],\74197 (14)

where the bounds e}, and eéwk are known a priori and
m M . .
Cqk # e, - These bounds may come from empirical

knowledge, or simply intuition. The inequalities (14)
associated with k-th measurement can be put into the
standard form

-1 S ngc - ngﬁ(p) S 17 (15)
with u
_ 2Uz0 — €y — €y
yz,k‘ — m Y, — Y, , (16)
Cyk ~ Cyk
_ 2
mef(p) = ﬁym,k(p)' 17)
Cyk ~ Cyk

Let Q) be a strip in parameters space PP, bounded
by two parallel hyperplanes. These hyperplanes are
defined by

Or ={peR"” : =1 <G —Ymxr <1} (18)

In recursive outer-bounding ellipsoids algorithm (OBE)
(Walter and Pronzato, 1997), the data are taken into

account one after the other to construct a succession

of ellipsoids containing all values of p consistent with

all previous measurements. After the first k£ observa-

tions, p that represents the set of feasible parameters

is characterized by the ellipsoid

E(*, M) ={p € " : (p - p")”
Mlzl(p - f)k) S 1}7

where p* is the center of the new ellipsoid consist-
ing k-th parameter estimate, and M, is a positive-
definite matrix witch specifies its size and orientation.
By means of intersection of the above strip and the el-
lipsoid, we get region of possible parameter estimates.
This region is overbouned, by a new ellipsoid. The al-
gorithm described below provides rules for computing
p* and M, in such a way that

(19)

E(p*, My41) D E(PF , M) N Q. (20)

ensuring that the volume of E(pf*+! My ) is mini-
mal. The center of the n¢-th, ellipsoid constitutes the
resulting parameter estimate, where n; is the number
of data points.

A detailed structure of this recursive algorithm is as
follows:

(1) Select an initial estimate p°, set M = ¢I (cis a
suefficiently large positive real number).
(2) While ry = 0, set

E(p®, M) = E(p" ™", M),
k< k+1.
(3) Calculate
Ymk =TiD",

and normalize y,, 1, according to (16,17).
(4) Set

V= Yok — Ymks 9 =Tt Mp_17}.
(5) Calculate

a4 = max (%, —1) ,



_ _ v+l
a_—max( ik 1).

(6) Update v and g to

a_—a4 2 2

a_+aq’ 9= (a,+a+) :

(7) If a- > 1 or ay > 1, then terminate the
algorithm as conditions (14) are contradictory.

(8) If aya_ > 1/2,thenset k < k + 1, and go to
step 3.

(9) Calculate

v =

— 2
al_ga

as = g2 [%(ai +a?)+2a_ay —1+ %] ,

az = g° (%) (2a4a- —1),

\ = —azt+y/ai—daias
- 2a1 ?

) =1+ - 25

(10) Set

T
Mk-—l"'k"'k.

Mk = I—m] Mk_l.

(11) Update p and M:
ok ok—1

b =p +A'UMkrka
Mk = Cl(/\)Mk
(12) If k = ny, then STOP else k < k + 1, and go to

step 2.

In spite of the considerable usefulness of the above
algorithm. It is possible to increase its effectiveness
even further. In particular, due to the fact that the
matrix M ~! describes the parameters confidence re-
gion, it can be employed to the automatic selection
of samples which provide a useful information in the
sense of parameter identification. This means that it
can be used to reject the samples which lead to an
increase (in the sense of the criterion selected) in the
size of the parameters confidence region. In order to
perform such a modification, it is necessary the define
an appropriate optimality criterion. In this work, it is
assumed that the size of the ellipsoid (the parameters
confidence region) is represented by the trace of the
matrix M ~! (A-optimality criterion)

®(M) = min trace (M) (21)

although it is possible to use other optimality crite-
ria, e.g. D-optimality, E-optimality (Ucinski, 1999).
Thus, the main objective is to develop an approach
which prevents trace (M_l) increasing. It can be eas-
ily achieved by rejecting the samples which increase
trace (M™1).

6. SIMULATION EXAMPLE

The purpose of the present section is to show the
application effectiveness of the proposed approach in

the designing FDI system. In particular, the real data
from an industrial plant were employed to identify the
state-space model of chosen parts of the plant. The
plant to be considered is the evaporation station at the
Lublin Sugar Factor S. A. (Edelmayer, 2000). Fig. 4
shows the scheme of the plant with all the available
process variables. Based on the observation of the
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Fig. 4. A scheme of the system being considered

process variables and the knowledge about the process
model can be expressed as:

Py = f(Cy, X), (22)

where f(-) denotes the modelled relationship, P, is
the juice flow at the outlet of the evaporator, C,, is the
control value, X represent servomotor rod displace-
ment. The data used for the identification and valida-
tion sets were collected in November 2001. The data
were, of course, appropriately filtered, moreover offset
levels were removed with the use of the MATLAB
identification toolbox. It should be also pointed out
that these data sets were appropriately scaled for the
purpose of neural networks designing. The output data
signals should be transformed taking into considera-
tion the response range of the output neurons. For the
hyperbolic tangent neurons this range is [—1,1]. To
perform such kind a transformation, the linear scal-
ing can be used. Moreover, to avoid saturation of the
activation function, the raw output data was trans-
formed to the interval [—0.8,0.8]. The selection of
best performing neurons for their processing accuracy
is realized with application of the optimal population
method approach. For the sake of comparison, the
ARX model was obtained. In both the ARX and non-
linear GMDH state-space models cases the order of
the model was tested between n = 1,...,4. Exper-
imental results have shown that the best suited both
models are of order n = 4. The quality indexes (9) for
the ARX and GMDH state-space type model which is
achieved with application of the modified OBE algo-
rithm are given in Tab 1.

Table 1: Quality indexes for the identification and
validation data sets

Identification | Validation
ARX 1.169 1.464
GMDH 0.033 0.169

The comparative study performed shows that the
GMDH model is superior to the ARX model. From
this results it can be seen that the introduction of



the non-linear model has significantly improved mod-
elling performance. The fault in the actuator was intro-
duced in the control loop. The residual signal was be
determined by a comparison of the measured values
and model output. An occurrence of fault is signalled
by a deviation of the residual value from zero. For
this reason minimization of the identification error in
the fault-free mode, as in the case of the proposed
GMDH state-space model, is of a great importance.
The residual signal for the GMDH state-space model
is shown in Fig. 5. As can be seen the fault is very easy
to detect., e.g. using a simple threshold technique.
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Fig. 5. Residual signal

7. CONCLUSIONS

The present work describes a new state-space model
identification framework which is based on the GMDH
neural networks. In particular, a comprehensive de-
scription of the network structure was presented and
a suitable training algorithm was given. The main
advantage to the proposed technique is that the pa-
rameter estimation problem can be formulated as a
linear in parameter one. This makes this algorithm
fast and effective. Another objective of this work was
to develop a residual generation scheme based on
the presented identification framework. The proposed
identification technique was applied to the identifica-
tion of a chosen part of an evaporation at the Lublin
sugar factory. Finally, the resulting model was used
to design a residual generation scheme. The reliability
of the proposed technique was tested using artificially
generated faults, i.e. the faults were introduced in the
control loop. Experimental results confirm that the
faults under consideration can be detested in a very
straightforward way.
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