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Abstract: We consider the term structure modeling by using a appropriate stochastic
parabolic system with boundary noises. After finding a sufficient condition for the
no arbitrage opportunity, we solv e the mean-wariance optimal control problem in the

incomplete market.
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1. INTRODUCTION

Bonds are tradable assetes in a financial market.
The market price P(t,T) is a function of the
time ¢t and the maturity 7' and chages its value
randomly as shown in Fig.1 (Shiryaev 1999). For

P(r,T)

P(0,T)

Fig. 1. The Market value P(¢,T') of a bond

the mathemtical modeling of this process, w e
rewrite P(t,T) = exp{— ftT f(t,x)dz} and the so-
called forward rate dynamics for f is constructed
in (Shiryaev 1999).

It is w ell kno wn that there are tw o different
motivations for term structure of interest rates
modeling. The first is concerned with the pricing

of interest rate derivative securities. In the sense of
arbitrage-free, the dynamics of the interest rates
is dev eloped in (Kennedy 1994). Starting from the
classical modeling of the short rate to the forward
rate including the Musiela equation, there are
many excellent books for example (Bjork 1998)

The second motivation is the actual ”economet-
ric” modeling of the real-world term structure
dynamics which giv es the statistical description

of the movements of interest rate in (Cont 1999).

In this paper, we consider the second viewpoint.
First we present the motivating discussions of the
term structure model. Then the parabolic stochas-
tic equation with boundary noises is proposed for
the term structure. After studying the existence of
a unique solution to this stochastic partial differ-
en tial equation , we deriv e the sufficiet condition
to support the no arbitrage opportunity. The final
section is devoted to consider the mean variance
optimal control problem for the wealth process in
the incomplete market situation.

The simple infinite-dimensional term structure
model is given b y



a2 = 2107
where v(t,z) is identified by using the argument
of absence of arbitrage and x denotes the time
to maturity. Recently from empirical observations,
Bouch et.al. and Cont (Cont 1999) proposed the
parabolic type systems to support the smoothness
property of f(t,z) with respect to x. The natural
extension of (1.1) to the parabolic system is

_ko*f ( x)

+ (‘(333 2) dt + v(t,z)dt + dw(t,z). (1.2)
In Cont (Cont 1999), in order to formulate (1.2)
first the two factors, i.e., the short rate and the
spread are taken out of the model. The short
rate and the spread are modeled by a bivariate
diffusion process. In such a modeling procedure
the short rate and the spread are independent
of the new variable of the constructed model
explicitly.

Here we formulate (1.2) without taking out these
two terms. By constructing the boundary condi-
tions, we get the short rate r(¢) and the long rate
£(t) as the boundary values f(¢,0) and f(¢,1).

First we set the simple boundary condition to
(1.2),

0f(t,0) _
= =0, (1.3)
The discrete version of (1.3) becomes
Az B
ie.,
T(t) = f(ta 0) = f(ta Al‘)

This implies that the short rate r(t) is the same
value as the nearest term structure value. It is
well known that if the considered situation has
no randomness, then f(t,z) becomes a constant
for all . So we need to adjust (1.3) to fit the
stochastic situation , i.e.,

kof(t,0) _ dwy (t)

2 oxr %(?) dt
where wy(t) is a standard Brownian motion pro-
cess. The discrete version of (1.4) with respect to
t and z is given by

(1.4)

dt + v(t,xz)dt + dw(t,z), (1.1)

k f(ti, Az) — f(t:,0) = oot )wo(ti)—wo(tiq)
2 Al’ — 00\li—1 At
ie.,

o B W (t;) — wo(tiz1) 2Aa:
r(t;) = f(ti, A)—oo(ti1) — Ato -

Hence the spot rate r(t;) is fluctuated by wp and
also depends on f(t,z),z > 0. It is also possible
to generalize the boundary condition (1.4) to

ROTED) — (70,0, £(0,1)

+U[)0(f(t7 0)) f(t7 1))
+Ull(f(t7 0)) f(t7 1))

This formulation is exactly the generalization of
the bivariate diffusion formulation given by Bren-
nan & Schwarz (Cont 1999) to the stochastic
boundary conditions.

2. MATHEMATICAL FORMULATION

In order to make our idea clear, we consider the
following simple situation:

df (t, m):g 82];;2’ z) dt + 6fgj) dt + v(t, z)dt
+dw(t, z), (t,z) €]0,t;[xG (2.1)
f0,2)=fo(z), ze€@ (2.2)
k dwo (¢
ROTEO) gy 220y o1y (2.3)
kof(t1) . dwi(t)
9 Oz _Ul(t)Ta t €]0>tf[ (24)
We work in the following Hilbert spaces:
V=H"Y(G)CH=L*G)CV'=dual of V.
Define V¢i,¢2 €V
< Agr,dp >= /{g%% - %@}d

G
The weak form of the proposed system is

t

(F(), ) + / < Af(8),6 > ds + (own(t), O)r

= (f0r ) / $)ds + (
0

where ' = L?(0G) and
(ows (1), ¢)r = oowo(t)$(0) + orw:(t)p(1)

and w, w; and wy are mutually independent Brow-
nian motion processes; Vo1, ¢ € H

w(t),p)Ve €V (2.5)

E{(w(t), 1) (w(t), p2)} = t(¢1, Qo)
E{Jwo(t)]”} = E{|wi(t)]} =t

with
Tr{Q} < oco. (2.6)

Theorem 2.1. Under (2.6),

k>0
fo € L*(Q; H)



and
v e L*(2x]0,ts[; V")
(2.5) has a unique solution in

L*(Q; C([0, 5] H) N L?(10, 8¢ [; H)).

Proof. The parabolic type stochastic evolution
equation with boundary noise has been studied
by many authors. For example the method used
can be found in the book by Rozovskii (Rozovskii
1983) and (Pardoux 1979).

Proposition 2.1. Under

fo € LA(Q;V), veL*(Qx]0,t;[; H) (2.7)
and
0 ,0Q
Tr{c’):r(a )} < o0, (2.8)
we have

fe L2000, V) N L2(0, 8[ H) (2.9)
and the spot rate r(t) = f(¢,0) and the long rate
£(t) = f(t,1) respectively satisfy

r, 0 € L*(Q;C([0,t5]; RY)). (2.10)

Proof: By using the technique proposed by Bardos
(Bardos 1971), it is easy to derive the above
regularity property.

3. MARKET MODEL
In this section G is replaced as G =]0,Ty[. Our
market consists of a bank account B(-) and bonds

for the maturity T,t < T < t + T, where ¢t is a
present time, i.e.,

P(t,T) = exp{— / fhayds)  (3.1)

and the bank account B is set as

dB(t
PO B0, BO) =B, (32)
where r(t) is a spot rate and is given by
r(t) = f(t,0).

Proposition 3.1. The bond price P(t,T) is a solu-
tion of

dP(t,T) = {r(t) — g fo(t, T — 1)
+g(T — )Y P(t,T)dt
Voo P(t, T)dwo(t) — P(t, T)dw(t,T) (3.3)

where
T—t T—t T—t
o= [ [ a@odsty~ [ vit.2)a
0 0 0
of(t,7)
g -n=L58
t T—s

and ¢(z,y) is a kernel of @Q,i.e.

Q= / 4(z,y)()dy (3.4)
G

Proof: By using Ito’ formulat to (3.1), (3.3) can
be obtained.

4. NO ARBITRAGE OPPORTUNITY

In the field of mathematical finance, it is impor-
tant that the proposed model is arbitrage free .
In order to prevent the free-lunch opportunity,
we must ahow that the proposed system can be
transformed to the local martingale by using the
Girsanov theorem.

Mathematically speaking, the discounted bond
price P(t,T) = £ ?—process should be a local
martingale. This means that the original parabolic
system should be transformed to the hyperbolic

one such that

70:.) = Gt + [(CED 5305

+ [EE VR [ ey dds + (@0),9)
where

(i(t.0).0) = [ 5D Sy,

+ [s,0) = 220V Riesto) [ wdulas

_U(wb(t)a ¢)F + (w(t)) QS)

If we can show that the process w(t,z) is a Brow-
nian motion process under the suitable measure,
P becomes a local martingale.

Proposition 4.1. In addition to (2.8) and (2.9), we
assume that

Q = Egl\/ Aie;®e;, e; € H?. (45)

Hence



tf )
E{/|Q*1/2%m(2t)|%ldt} < 00 (4.6)
0

where

Q™' =31,

i D e; (4.7)

Proof: 1t is easy to show that

2
B / @220 an

<m max {— }E{/| Hdt}

< Const. E{/| 92 |Hdt}

(from (2.9) )
< Const.

It should be noted that the operator ) is an m-
dimensional operator but the state process f (¢, x)
is still an infinite-dimensional one, because the
initial condition f, is still an infinite- dimensional
state.

Theorem 4.1. Under (4.5) we can define a Mar-
tingale measure P

—v(s, )

~ t
P ol [ 0*f(3,)
ap ~ P 27 0a2

__/|k82
63:2

and u?(t,:r)~ is a Brownian motion process with
respect to P where

0
+q(x,m), di(s))

—v(s,2) + g(z,m)|} ds

x

d(z,m) = 5, v/ Nes(2) / ei(y)dy.

0

Proof: This theorem is exactly the Girsanov theo-
rem, because (4.6) is the Novikov condition.

5. MEAN-VARIANCE OPTIMAL CONTROL
We consider a portfolio comprised of 3 shares of

the money market fund, and v(-, T) shares of bond
maturing at dates T

T
e(t) = B(B(H) + / A, T)P(t, T)dT, (5.1)

where we assume that
T < Ty. (5.2)

For the self-financing portfolio, the derivatives of
B(t) and ~(t,-) with respect to ¢ become zero. So
in our case, the instantaneous change in portfolio
value is

T
de(t) = B()dB(t) + / ~(t, T)dP(t, T)dT (5.3)

It is easy to show that A
de(t) = r(t)e(t)dt — /T (g fo(t, T — )
—g(T - t))'y(tt, T)P(t, T)dTdt
+09 /T +(t, T)P(t, T)dT dwo(t)

t

T
- / (. T)P(t, T)di(t, T)dT. (5.4)

Setting
u(t, T) = {V(t’T)(fD(t,T) fofogtilﬁivase (5:5)
and
dw(t,T) = oodwy(t) — dw(t,T), (5.6)
we have
k
de(t) = r(t)c(t)dt — (5 fult, = 1)
—g(- = t),u(t))pdt — (u(t),di(t,-)); (5.7)
where

T
- / H(T)%(T)dT

From (5.2) we can not treat the bond P(¢,T) for
all maturity T < Ty and the market becomes
incomplete (Shiryaev 1999). In such a situation,
we need to consider the mean-variance control
problem instead of the usual option pricing. Hence
instead of finding a portfolio (3,7),we want to
construct a control u(t,T') to achieve c(ty) = & for
a-priori given . It is almost impossible to achieve
c(ty) = € as. for the stochastic process c(t). So
our control problem is to find the control u to
minimize

Tw) = SE{le(ty) ~ €. 689

For (5.8) an admissible control is set as



u(-) € L%(0, t7[; H),u(t) € Unq ae., as. (5.9)

vyhere Uad 18 & convex closed non empty subset of
H =L*0,T).

It should be noted that our control problem is
not a usual linear one, because the system (5.7)
contains the random coefficients r(t) and f,.

We introduce the adjoint system:
—dp(t)=r(t)p(t)dt — (h(t),dw(t,-)); (5.10)
p(ty)=clty) =€ (5.11)

where

h e L*(Qx]0,t[; H) (5.12)

For the details about the above stochastic adjoint
equation, we refer to Bennsousann (Bensoussan
1983) , Kohlmann (Kohlmann and Tang 2001) .

Define Z to be the solution of
k
dZ(t) =r(t)Z(t)dt — (§fw(t,- —t

)
_g(' - t)v v(t))Tdt - (’U(t), dUA)(t, T))T
Z(0)=0, v € Ui

Noting that p(t) is Fi-measurable, we get

p(t)Z(t) —p(0)2(0) = — /(—fm(s,-* 5)

- / Z(s)(h(s), did(s)) + / (v(s), Qh(s))ds, (5.13)

0 0

where Q is an incremental covariance operator of
w. Taking the mathematical expectation to (5.13)
and using the initial condition Z(0) = 0 and the

terminal condition p(ty) = c(ty) — &, we get
E{p(ty)Z(ts)} = E{(c(ty) — ) Z(ts)}
=B{ [ [006), ~(3 fu(s:: = ) = g~ (o)
0
+Q(s)h(s)) s} (5.14)

Hence from the stochastic maximum principle, the
optimal process h satisfies

—5) —g(- —)}p(s)

Qh(s) = {5 (s,

Now we set the following assumption:

Q {%f.—glpe LAQx]0, ;] H). (5.15)

l\Dl??‘

Hence the optimal system becomes

Here we set
p(t) = P(#)(c(t) — q(?))-
Hence from (5.16) we get
dp(t) = P(t)(c(t) — q(t))dt + P(t)(de(t)

= (P(t)e(t) ~ Pe)a(t) ~ PO (D)t
~(E gl = 1) = g = )0 (0) P0)
+P()r(t)e(t)dt — P(£)(u®(t), dib(t)).1 (5.19)

and substituting (5.18) into (5.17), we obtain

) = —1“( )P(t)(c(t) — q(t))dt

+(Q ( fw( —t)—g(-—1)
><P(t)(C(t) q(t)), di(£)) -

Comparing (5.19) with (5.20) and assuming

dp(t
+(
(5.20)

(5.21)

Hence we have the following two equations

PO+ 2P0 +10 (5 fut,- 1

—g(- = )PP(t) = 0,P(ty) =1 (5.24)

and

POat) + PO +150 (S p -1

—g(- = 1)Pa(®)P(t) = —r(t)P(t)g(t) (5.25)

Substituting (5.24) into (5.25), we have

(5.26)

It is obvious that P(t) > 0 is satisfied from (5.24).
At this point we should notice that the solution

— q(t)dt)



q(t) of (5.26) must be a F;-measurable solution.
So we shall introduce the following process:
ty

q(t,t) = E{exp(— /r(s)ds)|.7—'t}§, fort > t,(5.27)

i

ie.,
- ty
dqgf’ D _ Bir(d) exp( / r(s)ds)E|Fo} (5.28)
t

and

lij(fv t) = Q(tvt)'

t—t
Hence we get

dq(t,t) .
lim === = r(t)q(t, t).

So the derivative of the left hand side of (5.26)
should be as stated above and

q(t) = q(t,1). (5.29)

In order to realize the optimal control (5.22) we
only need to obtain the explicit form of (5.29).
The Riccati equation (5.24) is not used anymore
as stated in Kohlmann et. al. (Kohlmann and
Zhou 1999)

Proposition 5.1. Define the Dirichlet map D such
that

Dg(s) = ¢(s,0), for ¢(s) € H'(]0,T7). (5.30)

The F;-measurable solution of (5.26) is given by

ﬂﬂzwm/—D@@ﬁﬂ0+/¢@ﬂWﬂ%}

ty  ty ty
><exp{%/[D/@(S,T)dsQN(D/(P(s,T)ds)*
23

+a§|D/(D@*(s,T))*dsF]ds}g, (5.31)
where ®(s,t) is a semigroup generated by A.

Proof: By using the semi-group and the Diriclet
map, the solution f of (2.5) can be represented by

s

ﬂﬁzé@ﬂﬂﬂ+/¢@ﬂWﬂm

+/‘I>(s,7‘)d1f;(7‘) + 00 /(D@*(s,r))*dwg(T).

t s

Hence it follows from (5.27) that

qsz@me/Dﬂmmmm

:exp{—/D(‘I)(s,t)f(t)+/<I>(s,7')u(7')d7')ds}
xE{exp(—D/( O (s, 7)dw(r)

+0o /(D@*(s, 7)) dwo (7))ds) }€.

t
Hence we derive (5.31).

Remark 5.1. From above proposition, to realize
the optimal control u(t) ,we need the information
for ¢(t) and f(t) processes.

6. CONCLUSIONS

From the empirical consideration of (Cont 1999),
the term structure is modeled by the stochas-
tic parabolic systems with boundary noises. The
arbitrage-free opportunity can be found under the
condition that the number of the random source
is finite (4.13). In the mean-variance optimal
control problem, we set the assumption (5.15).
This assumption is also recovered under the same
arbitrary-free condition.
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