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Abstract: A brief survey of the emerging field termed ”Control of Chaos” is given based
on about 200 publications in peer reviewed journals. Three major branches of research are
discussed in detail: ”nonfeedback control” (based on periodic excitation of the system);
”OGY method” (based on linearization of Poincar é map) and ”Pyragas method” (based on a
time-delay feedback). Some unsolved problems concerning the justification of chaos control
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1. INTRODUCTION

Chaotic phenomena and chaotic behavior have been
observed in numerous natural and model systems in
physics, chemistry, biology, ecology, etc. Engineering
applications are rapidly developing in areas such as
lasers and plasma technologies, mechanical and chem-
ical engineering and telecommunications. Publication
activity in this field has grown tremendously during
the last decade. Starting with a few papers in 1990, the
number of publications in peer reviewed journals2

exceeded 2700 in 2000, with more than half published
in 1997-2000. Although different interpretations of the
term “control” are in use3 the intensity of publica-
tions is unusually high.

1 The work was supported in part by the Cooperative research
Centre for Systems, Signals and Information Processing, University
of Melbourne and by the Russian Foundation for Basic Research,
project 99-01-00672.
2 Our investigations are based on data obtained from Science
Citation Index Expanded (www.isiglobalnet.com)
3 E.g. in some papers the term “control parameters” stands for
bifurcation parameters, i.e. paper deals with analysis of chaotic
system rather than with control of it. Also, in some experimental
studies “control group” of animals or patients refers to the group
which was not affected in the experiments

The development of the field was triggered by essen-
tially one paper. E.Ott, C.Grebogi and J.Yorke from
the University of Maryland, published in Physical Re-
views Letters in 1990 (Ott et al, 1990C2), where the
term “controlling chaos” was coined. Perhaps, the key
achievment of the paper (Ott et al, 1990) was the
demonstration of the fact that a significant change in
the behavior of a chaotic system can be made by a
very small, “tiny” correction of its parameters. This
observation opened possibilities for changing behav-
ior of natural systems without interferring with their
inherent properties. The idea was quickly appreciated
in physics and other natural sciences. Such a situation
may attract additional attention from the control com-
munity because it opens up new markets for control
theory.

It is worth noticing that, in spite of the enormous
number of published papers, very few rigorous results
are so far available. Most papers are written in a
“physical style” and their conclusions are justified by
computer simulations rather than analytical tools. As
a result, many problems remain unsolved.

Outlining the field and describing some of the open
problems is the aim of this survey. Three approaches

Copyright © 2002 IFAC
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to control of continuous-time chaotic systems will be
surveyed: the so called ”nonfeedback control”, OGY
method and Pyragas method. These approaches were
historically the first in the field and produced the
largest number of publications.

In Section 2 some preliminaries are given concerning
system models and control goals. Section 3 is devoted
to surveying the three abovementioned approaches.
In Section 4 the discrete-time case will be discussed,
while in Sections 5,6 a brief account of other direc-
tions and a list of application fields will be given.

Because of space limitations we will not discuss def-
initions and properties of chaotic systems. Chaotic
processes will be understood as solutions of nonlinear
differential or difference equations, characterized by
local instability and global boundedness. Moreover,
we will not discuss topics such as e.g. neural and
fuzzy control of chaos, control of chaos in distributed
(spatio-temporal) systems. Further references can be
found in the bibliography on control of chaos (papers
of 1997–2000) at www.rusycon.ru/chaos-control.html.

2. MODELS OF CONTROLLED PLANT

We will consider continuous time systems with lumped
parameters described in state space by differential
equations

_x = F (x; u); (1)

wherex isn-dimensional vector of the state variables;
_x = d=dt stands for the time derivative ofx; u is
anm-dimensional vector of inputs (control variables).
The vector–functionF (x; u) is usually assumed con-
tinuously differentiable. If external disturbances are
present, more general time-varying models will be
considered

_x = F (x; u; t): (2)

The model may also include the description of mea-
surements, i.e. thel-dimensional vector of output vari-
ablesy is defined, for example

y = h(x): (3)

If the outputs are not defined explicitly, it will be
assumed that all the state variables are available for
measurement, i.e.y = x.

Many authors consider discrete-time state-space mod-
els

xk+1 = Fd(xk; uk): (4)

wherexk 2 IRn; uk 2 IRm; yk 2 IRl; the value of
the state, input and output vectors atkth stage of the
process. The model (4) is determined by the mapFd.

The typical goal for control of chaotic systems is sta-
bilizing of an unstable periodic solution (orbit). Let
x�(t) be theT -periodic solution of the free (uncon-
trolled, u(t) = 0) system (1) with initial condition
x�(0) = x�0, i.e.x�(t + T ) = x�(t) for all t � 0. If
the solutionx�(t) is unstable it is reasonable to pose
the goal as stabilization in some sense, e.g. driving
solutionsx(t) of (1) tox�(t)

lim
t!1

[x(t) � x�(t)] = 0 (5)

or driving the outputy(t) to the desired output func-
tion y�(t), i.e.

lim
t!1

[y(t)� y�(t)] = 0 (6)

for any solutionx(t) of (1) with initial conditions
x(0) = x0 2 
, where
 is given set of initial
conditions.

The problem is to find a control function in the form
of either an open loop, (or feedforward) control

u(t) = U(t; x0) (7)

or in the form of state feedback

u(t) = U(x(t)) (8)

or output feedback

u(t) = U(y(t)) (9)

to ensure the goal (5) or (6).

Such a problem is a standard tracking problem, very
familiar to control theorists. However a key feature
of the control of chaotic systems as claimed by Ott,
Grebogi and Yorke (1990C2) is to achieve the goal by
means of sufficiently small (ideally, arbitrarily small)
control. Solvability of this task is not obvious since the
trajectoryx�(t) is unstable.

3. METHODS OF CONTROLLING CHAOS:
CONTINUOUS TIME

3.1 Feedforward (Open-loop) Control

The idea offeedforwardcontrol (also callednonfeed-
backor open loopcontrol) is to change the behavior of
a nonlinear system by applying a properly chosen in-
put functionu(t) – external excitation. Excitation can
reflect influence of some physical action, e.g. external
force/field, or it can be some parameter perturbation
(modulation). Such an approach is attractive because
of its simplicity: no measurements or extra sensors
are needed. It is especially advantageous for ultrafast
processes, e.g. at the molecular or atomic level where
no possibility of system variables measurement exists.

The possibility of significant changes to system dy-
namics by periodic excitation has been known for



almost a century. A number of authors discovered
that a high frequency excitation can stabilize the
unstable equilibrium of a pendulum (Stephenson,
1908C1; Kapitsa, 1951C1). This discovery triggered
the development of vibrational mechanics (Blekhman,
2000C1). Analysis of general nonlinear systems af-
fected by high frequency excitation is based on the
Krylov-Bogoljubov averaging method (Bogoljubov
and Mitropolsky, 1961C1). In control theory high
frequency excitation and parameter modulation was
studied within the framework of vibrational control
(Meerkov, 1980C1; Bellman et al., 1984C1) and dither
control (Zames and Shneydor, 1976C1). However the
abovementioned works dealt only with the problem of
stabilizing a given equilibrium or the desired (goal)
trajectory.

Recently Morgul(1999C1a, 1999C1b) proposed the
use of piecewise constant dither control to modify sys-
tem dynamics (nonlinearity shape, equilibrium points,
etc.) for systems in Lur’e form. In particular, the cre-
ation and elimination of chaotic behavior was stud-
ied using heuristic conditions for chaos suggested by
Genesio and Tesi (1992C1). A vast literature is de-
voted to excitation with medium frequencies - those
comparable with the natural frequencies of the system.
The possibility of transformation of periodic motion
into chaotic motion and vice-versa was demonstrated
by Alexeev and Loskutov (1987C1) for a 4th order
system describing dynamics of two interacting popu-
lations. Matsumoto and Tsuda (1983C1) demonstrated
the possibility of suppressing chaos in a Belousov-
Zhabotinsky reaction by adding a white noise distur-
bance. These results were based on computer simula-
tions. A first account of theoretical understanding of
the phenomenon was given in (Pettini, 1988C1; Lima
and Pettini, 1990C1), where the so called Duffing-
Holmes oscillator

�'� c'+ b'3 = �a _'+ d cos(!t) (10)

was studied by Melnikov’s method. The right-hand
side of (10) was considered as a small perturbation of
the unperturbed Hamiltonian system. The Melnikov
function related to rate of change of the distance be-
tween stable and unstable manifolds for small per-
turbations was calculated analytically and parameter
values producing chaotic behavior of the system were
chosen. Then additional excitation was introduced into
the parameter of nonlinearityb ! b(1 + � cos
t)
and the new Melnikov function was computed and
studied numerically. It was shown that if
 is close
to the frequency of initial excitation! then chaos may
be destroyed. Experimental confirmation of this was
made by a magnetoelastic device with two permanent
magnets, electromagnetic shaker and optical sensor
(Fronzoni et al., 1991C1). The results were surveyed
in (Lima and Pettini, 1998C1) where some open prob-
lem were also posed.

Recent investigations were aimed at better suppression
of chaos with smaller values of excitation amplitude
and providing convergence of the system trajectories
to the desired periodic orbit (limit cycle). Control of
discrete-time systems (maps) and autonomous sys-
tems were also studied.

Fronzoni and Giocondo (1998C1) showed by simula-
tion of Josephson junction and liquid crystal models
and by experiments with a bistable mechanical device
that changing the phase and frequency of parameter
perturbation can either decrease or increase the thresh-
old of chaos.

Belhaq and Houssni(2000C1) considered the case of
quasiperiodic excitations by reducing it to the pe-
riodic case, see also (Zhalmin, 1999C1). Basios et
al.(1999C1) studied the case of parametric noise exci-
tation by Melnikov analysis. Tereshko and Schehinova
(1998C1) suggested that the excitation frequency be
chosen to resonate with the peak frequency of the
power spectrum of one of the system variables. Mirus
and Sprott (1999C1) attempted to achieve resonance
of excitation with the frequency of the desired periodic
excitation. Since a chaotic attractor contains trajecto-
ries close to periodic orbits with different periods, a
proper choice should be made to minimize the am-
plitude of excitation. A numerical illustration of the
approach was given for a Lorenz system and for a
high dimensional system of 32 diffusively coupled
Lorenz systems(Mirus and Sprott 1999C1). Harmonic
excitation was introduced via modulation of parameter
r. In the papers of Chizhevsky et al(1998C1), Pis-
archik and Corbalan(1999C1) stabilization of unstable
periodic orbits by means of periodic action with fre-
quency much lower than the characteristic frequency
of the system was demonstrated. Suppression of chaos
in circular yttrium-ion-garnet films was discussed by
Piskun and Wigen (1999K).

In a number of papers the choice of excitation function
is based on tailoring it to the system nonlinearity. Let
the controlled system be described by equations:

_x = f(x) +Bu; x 2 IRn; u 2 IRm: (11)

Now letm = n anddetB 6= 0. If the desired solution
of the controlled system isx�(t) then an intuitively
reasonable choice of excitation is

u�(t) = B�1( _x�(t)� f(x�(t)); (12)

becausex�(t) will satisfy the equations of the excited
system, see (Hübler and Lusher, 1989C1). The equa-
tion for the errore = x � x�(t) is then _e = f(e +
x�(t))�f(x�(t)). If the linearized system with matrix
A(t) = @f(x�(t))=@x is uniformly stable in the sense
that A(t) + A(t)T � ��I for some� and for all
t � 0 then all solutions of (11), (12) will converge
to x�(t) (more general convergence conditions can be
found in (Fradkov and Pogromsky, 1998A). In case
m < n andB is singular the same result is valid under



matching conditions: vector_x�(t)� f(x�(t)) is in the
span of the columns ofB. Then the control can be
chosen to beu�(t) = B+( _x�(t) � f(x�(t)), where
B+ is the pseudoinverse matrix. Despite the fact that
the uniform stability condition rules out chaotic (i.e.
unstable) trajectories, it is claimed in a number of
papers that some local convergence to chaotic tra-
jectories is observed if the instability regions are not
dominant. Rajasekar et al.,(1997C1) compare this ap-
proach with other methods through a 2nd order system
example describing the so called Murali-Lakshmanan-
Chua electronic circuit and FitzHugh-Nagumo equa-
tions describing propagation of nerve pulses in a neu-
ronal membrane. Ramesh and Narayanan (1999C1)
investigated (numerically) different schemes of non-
feedback excitation in the presence of noise. In the
papers of Hsu et al.,(1997C1), Mettin(1998C1) results
for the discrete-time case were obtained.

In summarizing then, a variety of different open-loop
methods have been proposed. Most of them were
evaluated by simulation for special cases and model
examples. However, the general problem of finding
conditions for creation or suppression of chaos by
feedforward excitation still remains open.

3.2 Linearization of Poincaŕe Map (OGY Method)

As noted in the Introduction, the real explosion of
interest in the control of chaotic systems was caused
by the paper by E. Ott, C. Grebogi and J. Yorke
(1990C2). The two key ideas introduced in this paper
were:

(1) To use the discrete system model based on lin-
earization of the Poincaré map for controller de-
sign.

(2) To use the recurrent property of chaotic motions
and apply control action only at time instants
when the motion returns to the neighborhood of
the desired state or orbit.

The original version of the algorithm was described
for discrete-time systems (iterated maps) of dimen-
sion 2 and for continuous-time systems of dimension
3 and required on-line computation of the eigenvec-
tors and eigenvalues for the Jacobian of the Poincaré
map. Numerous extensions and interpretations have
been proposed by different authors in subsequent
years and the method is commonly referred to as the
“OGY method”. According to the recent publications
(Boccaletti et al, 2000; Grebogi and Lai, 1997C2a,
1997C2b; Grebogi et al, 1997C2a,1997C2b) the idea
of the OGY method is as follows.

Let the controlled system be described by the state
space equations

_x = F (x; u); (13)

wherex 2 IRn; u 2 IR1. (Usually the variableu
represents a changeable parameter of the system rather

than a standard “input” control variable but it makes
no diference from a control theory point of view).
Obtain the desired (goal) trajectoryx�(t) which is
a solution of (13) withu = 0. The goal trajectory
may be either periodic or chaotic: in both cases it is
recurrent. Draw a surface (Poincaré section)

S = fx : s(x) = 0g (14)

through the given pointx0 = x�(0) transversally to
the solutionx�(t) and consider the mapx 7! P (x; u)
whereP (x; u) is the point of first return toS of the
solution to (13) with constant inputu started from
x. The mapx 7! P (x; u) is called the controlled
Poincaŕe map. It is well defined at least in some
vicinity of the pointx0 owing to the recurrence prop-
erty ofx�(t) (The precise definition of the controlled
Poincaré map requires some technicalities, see (Frad-
kov and Pogromsky, 1998A). Iterating the map, we
may define a discrete-time system

xk+1 = P (xk ; uk); (15)

wherexk = x(tk); tk is the time of thekth crossing
anduk is the value ofu(t) betweentk andtk+1

The next step of the control law design is to replace the
initial system (13) by the linearized discrete system

~xk+1 = A~xk +Buk; (16)

where~xk = xk � x0 and find a stabilizing controller,
e.g.uk = Cxk for (15) Finally, the proposed control
law is as follows:

uk =

�
C~xk; if j~xkj � �;
0; otherwise;

(17)

A key point of the method is to apply control only
in some vicinity of the goal trajectory by introducing
an “outer” deadzone. This has the effect of bounding
control action.

Numerous simulations performed by different authors
confirmed the efficiency of such an approach. Often
slow convergence was reported which is actually the
price of achieving nonlocal stabilization of a nonlinear
system by small control.

There are two important problems to solve for imple-
mentation of the method: lack of information about
the system model and incomplete measurements of
the system state. The second difficulty can be over-
come by replacing the initial state vectorx by the so
called delay coordinate vectorX(t) = [y(t); y(t �
�); : : : ; y(t�(N�1)� ]T 2 IRn, wherey = h(x) is the
output (e.g. one of the system coordinates) available
for measurement and� > 0 is delay time. Then the
control law has the form:

uk=

8<
:
U(yk; yk;1; : : : ; yk;N�1);
if jyk;i�y�j � �; i=1; : : : ; N�1

0; otherwise;
(18)



whereyk;i = y(tk � i�).

A special case of algorithm (18) introduced by Hunt
(1991C2) was termedoccasional proportional feed-
back (OFP). The OFP algorithm is used for stabiliza-
tion of the amplitude of a limit cycle and is based
on measuring local maxima(or minima) of the output
y(t), i.e. the Poincaré section is defined as (14) with
s(x) = @h=@xF (x; o), which corresponds to_y = 0.
If yk is the value ofkth local maximum, then the OPF
method suggests a simple control law

uk =

�
K~yk; if j~ykj � �;
0; otherwise;

(19)

where~yk = yk � y� andy� = h(x0) is the desired
upper level of oscillations.

However, only partial results on justification of the
proposed algorithms 18) and 19) are available. The
main problem is estimation of the accuracy of the
linearized Poincaré map in the delayed coordinates:

yk + a1yk;1 + : : :+ aN�1yk;N�1
= b1uk + : : :+ bN�1uk�N�1

(20)

To overcome the first problem - uncertainty of the
linearized plant model, Ott et al.(1990C2) and their
followers (see survey papers Boccaletti et al.,(2000A);
Arecci et al.,(1998A); Grebogi et al.,(1997C2)) sug-
gested estimation of parameters in state-space repre-
sentation (16). However the detailed methods of ex-
tracting the parameters of the model (16) from the
measured time series are yet to be presented.

The problem is of course well known in identification
theory and is not straightforward, because identifica-
tion in closed loop under ‘good’ control may prevent
‘good’ estimation.

In (Fradkov and Guzenko, 1997C2; Fradkov et al.,
2000C2) a justification of the above method was given
for the special case whenyk;i = yk�i, i = 1; : : : ; n.
In this case the outputs are measured and control ac-
tion is changed only at the instants of crossing the
surface, see also (Fradkov and Pogromsky, 1998A).
For controller design an input-output model (20) was
used containing fewer coefficients than (16). For esti-
mation, the method of recursive goal inequalities due
to Yakubovich was used, introducing an additional
inner deadzone to resolve the problem of estimation in
closed loop. An inner deadzone combined with outer
deadzone of the OGY method, provides robustness of
the identification-based control with respect to both
model errors and measurements errors.

Further modifications and extensions to the OGY
method have been recently proposed. Epureanu and
Dowell (1997C2) used only data collected over a
single period of oscillation. A quasicontinous ex-
tension of the OGY method has been proposed by
Ritz et al.(1997C2). A multi-step version was stud-
ied by Holzhuter and Klinker(1998C2). Epureanu and

Dowell (1998C2, 2000C2) suggested a time-varying
control functionu(t) = c(t)�u instead of a con-
stant between crossings andc(t) is chosen to min-
imize control energy. Iterative refinement extending
the basin of attraction and reducing the transient time
was proposed by Aston and Bird (1997C2, 2000C2).
Basins of attraction for the initial state and parameter
estimates were evaluated by Chanfreau and Lyyjy-
nen (1999C2), while transient behavior was also in-
vestigated by Holzhuter and Klinker(1998C2). New
demonstrations of efficiency of the OGY method were
obtained both by computer simulations for the Copel
map (Agiza, 1999C2), the Bloch wall (Badescu et
al, 1997C2), magnetic domain-wall system (Okuno et
al, 1999C2) and by physical experiments with bronze
ribbon (Schweinsberg et al, 1997C2), glow discharge
(Braun, 1998C2) and nonautonomous RL-diode cir-
cuit (Bezruchko et al, 1999C2). The OPF method has
been used for stabilization of the frequency emission
from a tunable lead-salt stripe geometry infrared diode
laser and implemented in an electronic chaos con-
troller (Senesak et al, 1999C2). A modification of OPF
was investigated by Flynn and Wilson (1998).

3.3 Delayed feedback

During recent years there has been increasing interest
in the method of time-delayed feedback (Pyragas,
1992C3). K.Pyragas, a Lithuanian physicist proposed
to find and stabilize a� -periodic orbit of the nonlinear
system (1) by a simple control action

u(t) = K[x(t)� x(t� �)] (21)

whereK is feedback gain, and� is time-delay. If�
is equal to the period of an existing periodic solution
�x(t) of (1) foru = 0 and the solutionx(t) to the closed
loop system (1), (21) starts from� = f�x(t)g, then it
will remain in� for all t � 0. A puzzling observation
was made however, thatx(t) may converge to� even
if x(0)�2� .

The law (21) applies also to stabilization of forced
periodic motions in the system (1) with aT -periodic
right-hand side. Then� should be chosen equal to
T . The formulation of the method for stabilization
of fixed points and periodic solutions of discrete-time
systems is straightforward.

An extended version of Pyragas method has also been
proposed with

u(t)=K
MX
k=0

rk[y(t� k�)�y(t� (k + 1)� ](22)

wherey(t) = h(x(t)) 2 IR1 is the observed output
and rk ; k = 1; : : : ;M are tuning parameters. For
rk = rk; jrj < 1, andM ! 1 the control law (22)
becomes:

u(t) = K[y(t)� y(t� �)] +Kru(t� �) (23)



Although algorithms (21)-(23) look simple, analytical
study of the closed loop behavior seems difficult.
Until recently only numerical and experimental results
concerning performance and limitations of Pyragas
method have been available.

Basso et al (1997C3), Basso et al (1998C3) examined
the stability of a forcedT -periodic solution of a Lur’e
system (system represented as feedback connection of
a linear dynamical part and a static nonlinearity) with
a generalized Pyragas controller

u(t) = G(p)[y(t)� y(t� �)] (24)

whereG(p); p = d=dt is transfer function of the filter.
Using absolute stability theory (Leonov et al, 1996C1)
sufficient conditions on the transfer function of the
linear part of the controlled system and on the slope
of nonlinearity were obtained under which there exist
stabilizingG(p). A procedure for “optimal” controller
design, maximizing the stability bound was proposed
in (Basso et al, 1998C3). Extension to systems with a
nonlinear nominal part and a general framework based
on classical frequency-domain tools are presented in
Basso et al, 1999C3).

Ushio (1996C3) established for a class of discrete-
time systems that a simple necessary condition for
stabilizability with a Pyragas controller (21) is that
the number of real eigenvalues of matrixA greater
than one should not be odd, whereA is the ma-
trix of the system model linearized near the desired
fixed point. Proofs for more general and continuous-
time cases were given independently by Just et al.
(1997C3) and Nakajima (1997C3). The corresponding
results for an extended control law (22) were pre-
sented in (Nakajima and Ueda, 1998C3a; Konishi et
al,1999C3), who applied Floquet theory to the system
linearized near the desired periodic solution. Using
a similar approach, Just et al.(1999C3) gave a more
detailed analysis and established approximate bounds
for a stabilizing gainK. Some bounds forK for a
Lorenz system were obtained by Simmendinger et al
(1997C3) using the Poincaré-Lindstedt small parame-
ter method.

Schuster and Stemmel (1997C3) noticed that for a
scalar discrete-time systemyk+1 = f(yk; uk) a nec-
essary condition for existence of a discrete version
of the stabilizing feedback (22) is� < 1, where
� = @f=@y(0; 0), following from the theorem of
Giona(1991C3). They showed that restriction� < 1
can be overcome by means of a periodic modulation
of the gainK.

The Pyragas method was extended to coupled (open
flow) systems (Konishi et al., 1998C3; 2000C3a;
2000C3b), modified for systems with symmetries
(Nakajima and Ueda, 1998C3b). It was also extended
to include an observer estimating the difference be-
tween the system state and the desired unstable trajec-
tory (fixed point) (Konishi and Kokami, 1998C3).

Reported applications include stabilization of coher-
ent modes of lasers (Bleich et al, 1997C3; Loiko
et al, 1997C3; Naumenko et al,1998C3), magnetoe-
lastic systems (Hai et al, 1997C3; Hikihara et al,
1997C3), control of cardiac conduction model (Brandt
et al, 1997C3), control of stick-slip friction oscil-
lations (Elmer, 1998C3), traffic models (Konishi et
al, 1999C3,2000C3), PWM controlled buck conver-
tor (Battle et al, 1999C3), paced excitable oscillator
described by Fitzhugh-Nagumo model widely used
in physiology (Bleich and Socolar,2000C3), catalytic
reactions in bubbling gas-solid fluidized bed reactors
(Kaart et al, 1999K). A comparison of delayed feed-
back and feedforward methods for control of chaos in
lasers was presented by Glorieux(1998K).

A drawback of the control law (21) is its sensitivity
to parameter choice, especially to the choice of the
delay� . Apparently, if the system isT -periodic and
the goal is to stabilize a forcedT -periodic solution,
then the choice� = T is mandatory. Alternatively
an heuristic trick is to simulate the unforced system
with initial conditionx(0) until the current statex(t)
approachesx(s) for somes < t, i.e. until jx(t) �
x(s)j < e. Then the choice� = t � s will give a
reasonable estimate of a period and the vectorx(t)
will be an initial condition to start control. However
such an approach often gives overly large values of
the period. Since chaotic attractors contain periodic
solutions of different periods, an important problem is
to find and to stabilize (with small control) the solution
with the smallest period. This problem remains open.

4. DISCRETE-TIME CONTROL

Some discrete-time algorithms were mentioned in
Section 3.2 (when discussing methods based on the
Poincaré map) and in Section 3.3. They can be con-
sidered as special forms of sample-data control. There
are many results on stability of sample-data feedback
control systems. Stability analysis in the context of
chaotic systems was undertaken by Yang and Chua
(1998D).

Although many authors use the term “optimal con-
trol”, in most cases onlylocally optimal solutions
are proposed, based on minimization overu of one-
step-ahead lossesQ(Fd(xk ; u); u), whereFd comes
from plant model (4) andQ(x; u) is a cost function,
e.g. Q(x; u) = jjx � x�jj2 + �jjujj2, see (Abar-
banel et al, 1997aD). the choice of a large weight
� > 0 allows enforcement of the “small control”
requirement (Abarbanel et al, 1997bD). For large�
locally optimal control is close to the gradientuk+1 =
�
ruQ(Fd(xk; u); u); with small 
 > 0 (Fradkov
and Pogromsky, 1998A).

A substantial number of the papers devoted to discrete-
time control of chaos deal with low-order examples.
The variety of discrete-time examples of chaotic sys-
tems seems even broader than that of continuous-time



ones owing to a number of one- and two-dimensional
systems that do not have continuous-time counterparts
(this follows from Poincaré–Bendixon theorem stat-
ing that a smooth differential system evolving on a
two-dimensional manifold may have only equilibria or
limit cycles as!-limit sets, i.e. cannot be chaotic).

Among popular examples are systems described by
the logistic map:xk+1 = axk(1 � xk), treated by,
e.g. Codreanu and Danca (1997D), Escalona and Par-
mananda (2000D), McGuire et al.(1997D), Melby et
al.(2000D). Also the H´enon system (xk+1 = 1 �
ax2k + yk; yk+1 = �Jxk) is studied by Guzenko and
Fradkov (1997D); the tent map (xk+1 = rxk , 0 �
xk < 0:5;xk+1 = r(1 � xk); 0:5 � xk � 1) is stud-
ied by Place and Arrowsmith (2000D); the standard
(Chirikov) map (vk+1 = vk +Ksin�k, �k+1 = �k +
vk) studied by Kwon (1999D).

Only a few results are available for multidimen-
sional systems. They are based upon the gradient
method (Abarbanel et al.,1997D; Fradkov and Pogro-
msky, 1998A); variable-structure systems (Liao and
Huang, 1997D); generalized predictive control (Park
et al.,1998).

5. OTHER PROBLEMS

Let us give a brief account of other directions of re-
search related to control of chaos. Because of space
limitations we cannot discuss papers using neural
networks and fuzzy systems methods. According to
the Science Citation Index, the number of 1997–
2000 publications on neural and fuzzy control of
chaos in peer reviewed journals is 90 and 31, respec-
tively. Also, control of chaos in distributed (spatio-
temporal) systems (77 publications) is not considered
here. Among other directions the following are worth
mentioning.

Controllability. Although controllability of nonlin-
ear systems is well studied, few results are available
on reachability of the control goal by small control,
see (Chen, 1997E1; Alleyne, 1998E1; Fradkov et al.,
2000C2; Bollt, 2000E1; Van de Vorst et al, 1998E1). A
very general idea that the more a system is ”unstable”
(chaotic, turbulent) the ”simpler,” or the ”cheaper,” it
is to achieve exact or approximate controllability was
illustrated by Lions (1997E1).

Chaotization. The problem of chaotization of the
system by feedback (called also chaos synthesis,
chaos generation, anticontrol of chaos) was consid-
ered by Vanecek and Celikovsky (1994E2). More re-
cent results see in (Kousaka et al., 1997E2; Postnikov,
1998E2; Wang and Chen, 2000aE2, 2000bE2).

Other control goals. Among other control goals
achieving the desired period (Fouladi and Valdivia,
1997E3); desired process dimension (Ravindra and
Hagedorn,1998E3), desired invariant measure (Gora
and Boyarsky, 1998E3; Antoniou and Bosco, 2000E3;

Bollt,2000E3) desired Kolmogorov entropy (Park et
al, 1999) should be mentioned. A method for the
so calledtracking chaosproblem (following a time-
varying unstable orbit) proposed by Schwartz and
Triandaf (1992E3) was justified by the continua-
tion method for solving equations (Schwartz et al,
1997E3). Recent results are summarized in (Schwartz
and Triandaf, 2000E3).

Identification. A number of papers are devoted to
identification of chaotic systems. In most of them con-
ventional identification schemes are used. It has been
demonstrated that the presence of chaos facilitates and
improves parameter convergence (Epureanu and Dow-
ell, 1997E4; Petrick and Wigdorowitz, 1997E4; Tian
and Gao, 1999C3; Poznyak et al, 1999E4; Huijberts et
al, 2000E4; Maybhate and Amritkar, 2000E4).

Chaos in control systems. Control of chaosshould
not be mixed up withchaos in control systems. The
papers in the latter field appear since the 1970s
and study conditions for chaotic behavior in conven-
tional feedback control systems (Mackey and Glass,
1977E5; Baillieul et al, 1980E5; Mareels and Bit-
mead, 1986E5). Some recent results for 2nd order
systems can be found in (Alvarez et al, 1997E5); for
high-order systems with hysteresis – in (Postnikov,
1998E2); for some mechanical systems – in (Enikov
and Stepan, 1998E5; Gray et al, 1998E5), to mention a
few. A fruitful observation was made that the presence
of chaos may facilitate control (Vincent, 1997E5).

6. APPLICATIONS

The number of papers in peer reviewed journals in
1997-2000 and devoted to control of chaos in appli-
cation fields exceeds 200. A breakdown of the papers
among fields of science and engineering is as follows:
General Physics - 8; Laser Physics and Optics - 45;
Physics of Plasma - 11; Quantum Physics - 10; Me-
chanics - 29; Chemistry and Biochemistry - 13; Biol-
ogy - 5; Ecology - 3; Economics and Finance - 7; Ge-
ology - 1; Psychology - 3; Medicine - 12; General En-
gineering - 6; Mechanical Engineering - 3; Robotics -
3; Aerospace Engineering - 5; Electrical Engineering
- 20; Telecommunications - 14; Information systems -
8; Chemical Engineering - 6; Material Engineering -2;
Agriculture -1. It is seen that the most advanced appli-
cation fields are Laser Physics and Optics, Mechanics,
Electrical Engineering and Telecommunications.

7. CONCLUSIONS

Control of chaos is still an emerging field of research.
Its three major branches: ”nonfeedback control”, the
OGY method and the Pyragas method are historically
the first ones and are currently flourishing. Some im-
portant problems of justification of existing control
algorithms remain unsolved and provide challenges



for control theorists of the XXIst century. At the same
time many application results are reported.
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