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Abstract: This paper presents the sensor fusion for dead-reckoning mobile robot navigation. 
Odometry and sonar measurement signals are fused together using Extended Kalman Filter 
(EKF) and Adaptive Fuzzy Logic System (AFLS). Two methods of adaptation scheme are 
used, the first one uses Q  and R , the second one only uses Q . The first method gives 
faster result than the second one. The fused signal is more accurate than any of the original 
signals considered separately. The enhanced, more accurate signal is used to guide and 
navigate the robot. Copyright  2002 IFAC 
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1 INTRODUCTION 
 
To follow the designed path, an autonomous vehicle 
has to be equipped with three systems: navigation, 
guidance, and control system, see Gai (1996), 
Kaminer, et. al. (1998). Navigation system provides 
estimation of position and velocity (path), guidance 
system determines the optimal trajectory to drive the 
vehicle to desire path, and control system commands 
the vehicle’s actuators to drive the vehicle to the 
value determined by the guidance system. 
 
For navigation system, there are two basic position-
estimation methods commonly applied: relative and 
absolute positioning, see Borenstein and Feng (1996), 
Shoval, et al. (1998), Jetto, et al. (1999), Jetto, et al. 
(1999), and Roumeliotis, et al. (1999). Relative 
positioning, sometimes called dead reckoning, is 
usually based on inertial sensors or odometry sensors. 
In this method, the calculated distance from initial 
position determines current position estimation. In 
absolute positioning system, the positioning sensors 
interact with dynamic environment, such as 
navigation beacons, landmark, map matching, or 

satellite-based navigation signal, to find the position 
estimation. 
 
To solve the positioning problems, there are two 
types of sensors available: internal and external 
sensors, as explained by McKerrow (1991). Internal 
sensors measure physical variables on the vehicle 
itself; external sensors measure relationships between 
the vehicle and its environment, which can be natural 
or artificial objects. 
 
When the above sensors are implemented to solve 
positioning problems, both have advantages and 
disadvantages. The self-containing characteristic of 
the internal sensors make the measurement results of 
these sensors are almost always available to solve 
positioning problems, whereas, many situation, such 
as the shortage of signal caused by high building, 
tunnel, etc, make the external sensors are not viable 
to be used in that problems. For short period, 
measurements using internal sensors are quite 
accurate. However, for long-term estimation, the 
measurements usually produce a drift. On the 
contrary, because it measures absolute quantity, 
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external sensors do not produce the drift, however, 
their measurements are usually not always available, 
Santini (1997). 
 
This problem raises the idea of using multi sensors in 
the system. Measurement results from many sensors 
are fused to find an optimal estimation of position or 
velocity of the vehicle. 
 
The common estimation method used is by applying 
the Extended Kalman Filter (EKF), such as shown in 
the work by Jetto, et al., (1997, 1999), Tham, et al., 
(1999), Sasiadek and Wang (1999), Sasiadek and 
Hartana (2000). 
 
Odometry is one internal sensor that is widely used in 
navigation. It is mounted on the vehicle’s driving 
wheels and register angular movements of the 
wheels, which are then translated into linear 
movements. Because of the translation process, it has 
limited accuracy. For example, if slip has occurred on 
the wheel, the movement will be registered by the 
odometry, where in fact, the vehicle may stay on its 
position. Although the measurement signals are 
always available, in the long period, the incremental 
motion of odometry will cause the accumulative error 
in positioning process.  
 
When using odometry sensor, a systematic error can 
occur, which causes the bias in one direction of the 
movement of the vehicle. Unequal in the radius of the 
wheel where the odometry sensors are attached is one 
example of the systematic error. One method used to 
reduce this error is by conducting a benchmark 
experiment prior to regular operation of the vehicle 
(Borenstein). Using this benchmark, after the error is 
identified, the correction is applied in the control 
system parameters. If the systematic errors occur 
frequently, this method may not be sufficient. 
Therefore, it is beneficial if the error correction can 
be done in real time operation. 
 
The most common combination of sensors used in 
positioning and localization problems is combination 
of odometry and sonar sensor. Odometry sensor is 
mounted on the robot’s driving wheels and register 
angular movements of the wheels, which are then 
translated into linear movements. Beside the 
drawback that the translation introduces the error, see 
Sasiadek and Hartana (2000), this implementation 
makes the odometry signal always available. The 
sonar sensor, which measures absolute position of the 
robot, is used to update the position measured by 
odometry. 
 

It is widely known that poorly designed mathematical 
model for the EKF will lead to the divergence. 
Clearly, if the plant parameters are subject to 
perturbations and dynamics of the system are too 
complex to be characterized by an explicit 
mathematical model, an adaptive scheme is needed. 
Jetto, et al., (1999) used Fuzzy Logic Adapted 
Kalman Filter (FLAKF) to prevent the filter from 
divergence when fusing measurement from odometry 
and sonar sensors. In this method, the ratio of 
innovation and covariance of innovation is used as 
input to the fuzzy logic, and the output is used to 
weight the process noise covariance in EKF. 
Sasiadek and Wang (1999) used exponential data 
weighting to prevent the divergence. Mean value and 
covariance of innovation are used as the input of the 
Fuzzy Logic Adaptive Controller (FLAC). The 
output is then used to weight process noise and 
measurement noise covariance in EKF. This FLAC is 
implemented on the flying vehicle navigating in 
three-dimensional space. Both those methods have 
shown improvement in the estimation of the vehicle 
position in comparison with the EKF only. 
 
In this paper, the systematic error in odometry sensor 
is corrected during real-time operation of the vehicle 
by using measurements result from the sonar sensor. 
EKF is applied to fuse those two signals to find the 
best estimation of position. To prevent the filter from 
divergence, an adaptation scheme using fuzzy logic 
id used. Two methods are implemented as fuzzy 
controller. The first method is using exponential data 
weighting, and the second method is using 
comparison between calculated covariance and 
estimated covariance. Those two methods are 
explained later. 
 
 

2 MODEL 
 
The model of the vehicle used in the simulation is 
based on a differential-drive. In this model, the 
vehicle can be steered by differentiating the wheels 
angular velocity. The kinematic model of this vehicle 
is described by the following equations, see Wang 
(1988): 
 

)(sin)()( ttvtx θ=&  (1) 
)(sin)()( ttvty θ=&  (2) 

)()( tt ωθ =&  (3) 
 
where )(tv  and )(tω  are, respectively, the linear and 
angular velocities of the robot, and are expressed by: 
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where D  and d  are the wheel diameter and the 
distance between the odometry encoder respectively. 
 
If we denote the state variable of the vehicle as 

Tttytxt ])()()([)( θ=x , and the vehicle control 

input as Tttvt ])()([)( ω=u , the kinematic model in 
equations (1) - (3) can be written in the form of 
stochastic differential equation as: 
 

)())(),(()( tttft wuxx +=&  (6) 
 
where )(tw  is a zero-mean Gaussian white noise 
with covariance matrix )(tQ , which represents the 
model inaccuracies. This time-equation is linearized 
and sampled in a small period kk ttT −= +1 .  
Assuming that during this time interval, the linear 
and angular velocities are constant, and that the 
vehicle is following an arc path (see Wang (1988)), 
then, the equations for Extended Kalman Filter can 
be expressed by: 
 

kkkk uBxx +=−
+1  (7) 

k
T
kkkk QAPAP +=−

+1  (8) 
1

1111111 ][ −
++

−
+++

−
++ += k

T
kkk

T
kkk RCPCCPK  (9) 

][ 111111
−

++++
−

++ −+= kkkkkk xCyKxx  (10) 
−
++++ −= 1111 ][ kkkk PCKIP  (11) 

 
where: 
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and, 2
11 xQ σ= , 2

22 yQ σ= , and 2
33 θσ=Q  are 

diagonal elements of covariance matrix )(tQ  of 
)(tw  in Eq. (6). 

 
The measurement, in this case, will consist of the 
measurement from odometry sensor and sonar sensor. 
The size of the measurement vector depends on the 
number of active sonar sensor. In general, this vector 
can be expressed as (See Jetto et. al. (1999)):  
 

T
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 (19) 
where nkd  is the measurement of sonar nth at time k. 
 

3 ADAPTIVE FUZZY LOGIC SYSTEM 
 
In Kalman filter model, both process noise kw  and 
measurement noise kv  are assumed zero-mean white 
noise sequence with covariance kQ  and kR . If the 
model of EKF is tuned perfectly, the residual 
between actual and predicted measurement should be 
a zero-mean white noise process. 
  
In real application, we do not know all parameters of 
the model, therefore, the exact values of kQ  and kR  
are not known. If the actual process and measurement 
noises are not a zero-mean white noise, the residual 
in Kalman filter will also not be a white noise. If this 
is happened, the Kalman filter would diverge or at 
best converge to a large bound.  
 
Jetto, et al. (1999) used fuzzy logic adapted Kalman 
filter to prevent the filter from divergence. The fuzzy 
logic controller uses one input and one output. The 
ratio between innovation and covariance of 
innovation process is used as an input. The output is a 
constant, which is used to weight the process noise 
covariance. The controller uses five fuzzy rules, and 



 

it is implemented in a wheeled mobile robot equipped 
with odometry and sonar sensors. 
 
Sasiadek and Wang (1999) used fuzzy logic adapted 
controller (FLAC) to prevent the filter from 
divergence when fusing signals coming from INS and 
GPS on flying vehicle. Nine rules were used. There 
were two inputs, which are the mean value and 
covariance of innovation, and the output is a constant 
that is used to weight exponentially the model and 
measurement noise covariance. 
 
In the case of fusing signals that come from odometry 
and sonar sensors, sometime only odometry 
measurements are available. The innovation will be a 
white noise as long as the process and measurement 
noises are assumed as a white noise. However, when 
the sonar measurements become available, and 
combined with the odometry measurement, the 
innovation might be not a white noise anymore. This 
will cause the filter to diverge. 
 
When systematic error occurs in the vehicle, the 
process and measurement noise actually are not a 
gaussian white noise, which causes divergence in 
EKF. AFLS can be used to adapt the filter gain so 
that the divergence can be avoided. The scheme of 
the adaptation process is shown in Fig. 1. 
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Fig. 1. Adaptive Fuzzy Logic System (AFLS) scheme 
 
 

3.1 METHOD 1 
 
The first method used to adapt the Kalman filter is by 
using exponential data weighting. In this method, the 
weighted process and measurement noise covariance 
can be written as: 
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k αRR  (20) 
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where 1≥α . Q  and R  are constant matrices of 
process and measurement noise covariance. For 

1>α , as time k  increases,  kQ  and kR  will 

decrease, which means that the most recent 
measurement is given higher weighting.  
 
If the weighted estimation covariance is defined as: 
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then  the EKF equations become: 
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The membership function used in this method and the 
rule table can be found in Sasiadek and Hartana 
(2000). 
 

3.2 METHOD 2 
 
In the first method, both Q  and R  are used to adapt 
the Kalman filter. In the second method, only Q  is 
used.  

If we assume σσσ == yx , and 
σ
σ

σ θ=z , then 

equation (15) can be written as: 
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If ][ 111

−
+++ − kkk xCy  is the error between the 

measurement and the estimation, which is modeled as 
a zero-mean, white Gaussian sequence with 
covariance matrix as in Eq. (11), we can create a 
variable γ  as: 
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This variable indicates the comparison between the 
actual covariance and its theoretically assumed value. 
If γ  is near one, this means that the value of kQ  is 
appropriate. If γ  is very near to zero, the assumed 
covariance is too large and we need to reduce the 
value of kQ . If γ  is larger than one, that means we 
need to increase the value of kQ . 
 
The change in the value of kQ  can be achieved by 
using the Eq. (28), where: 
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There are 5 rules are used. The linguistic variables 
used for γ  are: NZ (near zero), S (small), M 
(medium), ML (moderately large), and L (large). The 
linguistic variable used for α  are: NZ (near zero), 
N1 (near to 1), LL1 (little larger that 1), ML1 
(moderately larger than 1), L (large). 
 
The membership function (MF) for γ  and α  are 
displayed in Fig. 2 and Fig. 3. 
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Fig. 2. MF of γ  
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Fig. 3. MF of α  
 
 

4 EXPERIMENTS AND RESULTS 
 
Simulation experiments have been conducted to show 
the implementation of AFLS when fusing the signals 
that come from odometry and sonar sensor. 

Systematic error in odometry measurement, which 
comes from unequal in wheel’s diameter, is also 
considered. The vehicle is planned to follow sinus 
path in in-door environment. The map of the in-door 
environment along with the movement of the mobile 
vehicle that has systematic error is shown in Fig. 4. 
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Fig. 4. Map of in-door environment 
 
The implementation of the AFLS using method 1 and 
method 2 are simulated. The simulation result for 
method 1 is displayed in Fig. 5. In this experiment, 
the present of sonar sensor, which measures the 
relation of the mobile vehicle and its environment, 
reduces the systematic error, and the mobile vehicle 
can follow the designed path. The implementation of 
AFLS into the EKF allows the vehicle to follow the 
designed path smoothly. 
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Fig. 5. Simulation result of AFLS using method 1. 
 



 

The simulation result for method 2 is displayed in 
Fig. 6. In this experiment, the result is almost the 
same as in the method 1, except that there is one 
overshoot occurs when the signals from sonar sensors 
become available. 
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Fig. 6. Simulation result of AFLS using method 2. 
 
Two variables adapted in method 1, Q  and R , 
makes the method 1 gives faster result than method 2, 
which is only one variable is adapted. 
 
 

4.1 CONCLUSIONS 
 
In this paper, Extended Kalman Filter (EKF) has 
been used to estimate the position of the mobile 
vehicle. To prevent the filter from divergence, the 
adaptation scheme using fuzzy logic system 
(Adaptive Fuzzy Logic System - AFLS) was 
implemented. Two methods were used in the 
adaptation process, the first one uses Q  and R , the 
second one only uses Q . 
 
Odometry and sonar sensors have been used to 
simulate the method. From the simulation 
experiment, it shows that method 1 gives faster result 
than method 2. The method can also be used to 
correct the systematic error. Using this method, real-
time operation of the vehicle can be reduced. 
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