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Abstract: The paper investigates the robust H∞ problem for a class of generalized 
forced Hamilton system with uncertainty. We begin with presenting a design approach 
of robust H∞ controller and show that the L2 gain from the disturbance input to the 
regulation output signal may be reduced to any given level provided that a kind of 
algebraic inequality has a solution. Then, by means of the proposed method, a 
Hamiltonian systems-like model with uncertainties is firstly presented, which can 
describe the power system dynamics on a full scale, and consequently a decentralized 
nonlinear robust H∞ control law is achieved by construction of a Hamiltonian function 
for the multimachine power system. Simulations performed on a 6-machine system 
verified that the proposed excitation control could adapt to the conditions under large 
disturbance and enhance greatly the transient stability of power system compared to 
other types of controllers.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Recently, many researchers studied a variety of 
problems for port-controlled Hamiltonian (PCH) 
system having energy dissipation and energy 
exchange with the environment (R. Ortega, 1998a, 
1998b; B.M.J. Maschke, 1998, 1999; Fujimoto, 2000; 
D. Cheng, 2000, 1999; T. Shen, 2000; Z. Xi, 2001). 
In fact, the Hamilton function in PCH system is the 
total energy including potential and kinetic energy in 
the physical systems, and can play the role of 
Lyapunov function for the system. From (B.M.J. 
Maschke, 1999; D. Cheng, 2000, 1999; R. Ortega, 
1998b), it could be seen that the Hamiltonian 
function approach has some advantages in the design 
of control law. On the other hand, as well-known, 
every practical engineering system in real operation 
is influenced by uncertainty, including unmodelled 
dynamics, measuring and parameter error, etc., and it 
is difficult to formulate a precise mathematical model 
to describe the system dynamics completely. Hence, 
the uncertainty has to be taken into account when we 
deal with the engineering system using Hamilton 
theory.  
 
The modern power systems are characterized by 
strong coupling and high nonlinearity with the 
development of large capacity units, high voltage and 
long distance AC-DC transmission and the 
application of superconductive storage facilities, 
which are affected by the exogenous disturbances in 
operation, such as short-circuit and load-shielding. 
Design of effective decentralized robust controller 
with disturbance attenuation is an important objective 

in the field of control of modern power system. 
Recently many researchers investigated the problem 
and achieved many new results (Q. Lu, 1989, 1996, 
2000ab; S. Mei, 1999; Y. Wang, 1997, 1998). Papers 
(Q. Lu, 1989, 2000a; S. Mei, 1999) proposed a 
decentralized nonlinear excitation control law with 
differential geometric methods and nonlinear H∞ 
control theory, and the strict verification of its 
optimal and robust properties are given from a 
mathematical point of view; however, the physical 
meaning is not clear for its index of the nonlinear 
optimal and robust properties. Papers (Y. Wang, 1997, 
1998) presented an excitation controller for 
multimachine system based on modern robust 
nonlinear control approaches, e.g. direct feedback 
nonlinear compensation, while it loses the 
practicality in engineering for the ignorance of the 
impact of loads in the network.  
 
In paper (T. Shen, 2000), the authors investigated the 
adaptive L2 disturbance attenuation control for 
Hamilton system with parametric uncertainties and 
applied the proposed method to power system. In 
paper (Z. Xi, 2001), considering the external 
uncertainties such as disturbance, the authors dealt 
with the H∞ problem of the generalized forced 
Hamilton system, and present a sufficient condition 
which only requires the solution of a set of algebraic 
matrix equations, so the formidable difficulty is 
avoided when seeking the solution of HJI partial 
differential inequality in general nonlinear H∞ control 
problem, and this result has applied successfully to 
the simple power system. However, in all these 
Hamilton system approaches mentioned above, there 
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is a key problem that is to construct the Hamilton 
function of the system so as to transform the studied 
system into the form of a forced Hamilton system, 
although papers (B.M.J. Maschke, 1998, 1999) 
propose a method to realize the transformation by 
constructed source system and pre-set constant 
control. In fact, the construction of a Hamilton 
function is similar to that of a Lyapunov function, in 
which no universal law can be used, so the research 
results are limited to the systems in some specific 
forms. 
 
As to a class of generalized forced Hamilton system 
with the unmodeling dynamic uncertainty, this paper 
proposes and studies the nonlinear robust H∞ control 
problem, which includes the L2-gain analysis, the 
construction of ∞H  controller, etc, and presents a 
sufficient condition solving the proposed problem. 
The study investigates a new field of the control of 
the generalized forced Hamilton system with 
uncertainty; while a new approach is initiated to 
transform the general nonlinear system into Hamilton 
system structure utilizing the thoughts of uncertainty 
modeling, namely, the unforced system is firstly 
separated into two parts, the one is easy to find out 
the Hamilton function, and the other one is 
incorporated into the uncertain perturbation function 
set, then the robust control methods are exploited to 
deal with the uncertainty (T. Shen, 1995), and finally 
the nonlinear robust H∞ controller is achieved. As 
the application of the method above, the paper 
deduces the decentralized nonlinear robust control 
law for multimachine excitation system, and the 
simulation result performed on a 6-machine system 
demonstrates that the proposed control law enhances 
the transient stability of the power systems 
enormously and possesses superior robustness 
compared to that of other types of controllers.  
 
 

2. ROBUST H∞ CONTROL FOR HAMILTON 
SYSTEM WITH UNCERTAINTY 

 
Considering the generalized forced Hamilton system 
with uncertainty as follows 
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represents the uncertain function, which derives from  
the modeling error or the parameter perturbation in 
the plant. 
Suppose 0)0( =f  and the uncertain function )(xf∆  
can be decomposed as 
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 and )(xfδ  are the known and 

unknown functions with sufficient differentiability, 
respectively. Also, we suppose that the uncertainty 

)(xf∆  belongs to the set defined by  

{ ( )| (0) 0, ( ) ( ), }n
f f f f

Hf x x m x x R
x

δ δ ∂Ω = ∆ = ≤ ∀ ∈
∂

 (3) 

where )(xmf
 is a given bounded function satisfying 

( ) 0, 0fm x x> ∀ ≠  and ( ) 0fm x = . 

Definition 2.1 The robust H∞ control problem for 
system (1) is, for a given 0>γ , to construct a state 
feedback controller )(xUu = , such that the following 
performance is satisfied for any fxf Ω∈∆ )( : 
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where 0x  is initial value of the state )(tx , )(xV  is 
actually the system storage function to be constructed. 
The controller )(xU  is called as robust 
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controller for system (1). 
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(A3) Hamilton function )(xH  has strict local 
minimum at 0=x . 
If there exist a positive number α  and some 
suitable scalar function nRxx ∈∀> ,0)(λ  such that  
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then the robust  H∞ state feedback controller for 
system (1) is given by  
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where 
nI  is the identity matrix. 
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(4), we have 

( ) 0)(
)(2
)()]()]()()[(

)()([
2
1)]()()()()([

2
)(

2

2

2
1

2
2

11
2

112

2

≤
∂
∂





+−

+




++−
∂

∂

−

x
HIxmxm

x
xkxgxDxDxg

xgxgxexexxgxgxR
x
H

nf
T
f

TT

TT
ff

T
T

λ
γα

λ
γ

αα  (6) 

Thus we obtain 

2

12

2
222

2
2

2
2

1112

2

12

)(1
2

)||||||||(
2
1

||||
2

||||
2

)()()(
2
1||||

2
1

)()]()()())()([(

x
Vxgwzw

wwwxg
x
V

x
Vxgxg

x
Vz

wxg
x
VxfxUxg

x
HxRxJ

x
V

T
T

T

TT

∂
∂−−−=

+−
∂
∂+

∂
∂

∂
∂−−≤

∂
∂+∆++

∂
∂−

∂
∂

γ
γγ

γγ
γ

(7) 

This implies the dissipative inequality  
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holds along any trajectory of the closed loop system. 
Hence, for any given 0>T , we have 
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Therefore, if there exists a solution )(tx  whose 

trajectory satisfying 0=
dt
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Hence, by the robust zero-state detectability 
condition (A1), the asymptotically stability of (10) 
for any 

ff Ω∈∆  follows from Lasalle Invariant 
Theorem (J. J. E. Slotine, 1991). 

 
 

3. DECENTRALIZED ROBUST 
∞H  CONTROL 

FOR MULTI-MACHINE POWER SYSTEM 
 
In this section, we study the multimachine power 
system using the proposed approach, and the 
following two points are completely original: on one 
hand, the nonlinear dynamical model with 
uncertainties is formulated to describe the power 
system dynamics on a full scale; and on the other 
hand, the decentralized control is realized by 
constructing Hamilton function. In fact, the 
constructed Hamilton function is similar to the 
system energy function in the sense of Lyapunov 
analysis in the process of transforming the 
multimachine power system into a forced Hamilton 
system. So the decentralized nonlinear robust 
controller designed based on the structure of 
Hamilton system has clear physical illustration and is 
applicable to the engineering field. 
Consider the following n-generator disturbed power 
system 
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the d-axis current. iδ , iω  and qiE ′  denote the 
rotor angle (in radian), the rotor speed (in rad/sec) 
and the internal transient voltage ( in per unit), 
respectively. fiV  is voltage of the field circuit, the 
control variable in per unit. iM  is the inertia 
coefficient of a generator set, in seconds; iD  is 
damping constant, in per unit; doiT  is field circuit 

time constant, in second; iiB  is the self-admittance 
of the i-th node, ijB  is the mutual-admittance 
between the i-th and j-th nodes, and iiG  is the 
self-conductance of the i-th node, in per unit 
respectively; dix  and dix′  are d-axis synchronous 
reactance and transient reactance of a generator 
respectively, in per unit; miP  is mechanical power, 
in per unit; disP  identifies torque disturbance  
acting on rotating shaft of the generator set, and disV  
denotes the electromagnetism disturbance entering 
the excitation winding .  
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j
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Hamilton function for the n-generator power system 
as  
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where iv is a new control input. 
Select the regulation output as 
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Theorem 3.1 Considering the multimachine system 
composed of (18)-(20), for any given 0>γ , the 

robust ∞H  control problem of the system can be 
solved by the following control law  
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Proof. Firstly, considering the uncertainties in the 
power system model, we have  
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determined by (3). Secondly, from Hamilton function 
)(xH , we can obtain its Hessian matrix as 
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At the point, from power system dynamics so based 
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is positive-definite, which implies )( sxH  is also a 
positive-definite, i.e., )(xH  has strict minimum at sx . 
Now, using Theorem 2.1, we construct the excitation 
control law for every generator as follows 
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From Theorem 2.1, the control law (28) can make the 
2L  gain from the disturbance 

iw  to regulation 
output iz  less than or equal to the given γ . As for 
the stability of the closed-loop system when 0=iw , 
from some manipulation, we have 
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So the trajectory of the closed –loop system would 
approach to the largest invariant set which is a subset 
of the following set 
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It can be seen that the largest invariant subset of Ξ  
is just the equilibrium points of system (18)-(20), 
hence, according to LaSalle Invariant Theorem 
(Slotine J J E and Li W, 1991), the closed-loop 
system is asymptotically stable. Thus we could 
conclude that the control law (28) is a robust ∞H  
one for the system. 
Next, we will make the control law more practicable 
for engineering. According to power system 
dynamics (Q. Lu, 2000a), we have 
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where eiQ  is the reactive power of the i-th generator, 
and tiV  is its terminal voltage. Hence the control 
law (28) can be written as 
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Finally we come to the excitation control law for 
multimachine system as follows: 
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where the selection of the control gain iα , which 
represents the disturbance attenuation level of the 
controller, depends on L2-gain in the closed-loop 
system and the boundary function of the uncertainty 
set. Moreover, all variables in control law (31) are 
locally measurable and only related to the local 
generator being irrelative to the network parameters, 
so the decentralized control is obtained. 

 
 

4. COMPUTER TEST RESULTS 
 

A 6-machine power system is used for computer test 
(Fig. 1). The system data is listed in Appendix of (Q. 
Lu, 2000a). In the simulations, the generators’ 

models are the same as in (14) and there are no 
turbine governors. In order to investigate the 
effectiveness of the suggested controller in improving 
transient stability, comparisons are made to several 
different types of excitation controllers.  
 
Three cases are studied as follows:  
Case 1: Generators 2 to 5 are installed conventional 
PSSs with their transfer functions given in (Q. Lu, 
1996); Case 2: Generators 2 to 5 are equipped with 
linear optimal excitation control designed by LQR 
approach with feedback gains given in (Q. Lu, 1996);  
Case 3: The same generators are equipped with 
nonlinear optimal excitation controllers (NOEC) (Q. 
Lu, 1996);Case 4: The generators are equipped with 
the proposed nonlinear robust H ∞  excitation 
controllers (38) (NRHEC). System transients are 
stimulated by a three-phase short circuit fault 
occurred on line 11-12 close to bus 11 (see Figure 1) 
and cleared by tripping the faulted line in 0.1s. The 
simulation results for the 4 cases are shown in 
Figures 2 to 5 respectively where generator rotor 
angle response to the fault is plotted. We can see 
from Figures 2 and 3 that if linear PSS or LOEC is 
used, the system loses its synchronism soon after the 
fault occurs. However the system remains stable 
when NOEC or NDDEC is applied (see Figures 4 

and 5). Comparing Figures 5 with Fig. 4, we can see 
that when NRHEC scheme is used, the corresponding 
rotor dynamics is better than that of NOEC scheme a 
little. Besides NRHEC has better robustness, which is 
significant to real power system applications. As we 
know, since the NOEC method is based on 
mathematical models with fixed structure and 
parameters without considering uncertainties, so the 
robustness of NRHEC is superior to NOEC in theory, 
just as the linear robust control is superior to linear 
optimal control (LOEC), which has been 
demonstrated by modern control theory.  
 
 

5. CONCLUSIONS 
 
In this paper, the nonlinear robust H ∞  control 
problem is studied for a class of generalized forced 
Hamilton system with uncertainty. The formulation 
of robust H∞ controller is changed into seeking the 
solution of an algebra matrix inequality by 
considering the unmodeled dynamics in modeling the 
system, hence, the design problem of nonlinear 
robust H∞ controller is greatly simplified. Another 
advantage of the proposed method is its application 
to a real power system which considering the 
network load, that is, for multimachine system whose 
self-admittances is not omitted, the generalized 
forced Hamilton system model is constructive in 
formulating the Hamilton function and consequently 
achieve the decentralized excitation control strategy. 
Simulation results have verified the effectiveness of 
the proposed excitation law. 
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Fig. 2 Dynamic response of the system with PSS
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Fig. 3 Dynamic response of the system with LOEC
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Fig. 4 Dynamic response of the system with NOEC
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Fig. 5 Dynamic response of the system with NDHEC
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