Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

A PROVABLY CONVERGENT DYNAMIC
WINDOW APPROACH TO OBSTACLE
AVOIDANCE

Petter Ogren *! Naomi E. Leonard **?2

* Division of Optimization and Systems Theory, Royal
Institute of Technology (KTH), SE-100 44, Stockholm,
SWEDEN
** Department of Mechanical and Aerospace Engineering,
Princeton University, Princeton, NJ 08544, USA

Abstract: The dynamic window approach is a well known navigation scheme
developed in Fox et al. (1997) and extended in Brock and Khatib (1999). It is safe
by construction and has been shown to perform very efficiently in experimental
setups. However, one can construct examples where the proposed scheme fails to
attain the goal configuration. What has been lacking is a theoretical treatment
of the algorithm’s convergence properties. Here we present such a treatment.
Furthermore, we highlight the similarity between the Dynamic Window Approach
and the Control Lyapunov Function and Receding Horizon Control synthesis put
forth by Primbs et al. (1999). Inspired by these similarities we propose a version
of the Dynamic Window Approach that is provably convergent.
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1. INTRODUCTION

The problem of robotic motion planning is a well-
studied one, see for instance (Latombe, 1991).
Since we present here a new development of the
work in (Fox et al., 1997) and (Brock and Khatib,
1999), we refer to these papers for a thorough
discussion on related work. We note, however,
that the Dynamic Window Approach still remains
one of the best approaches to efficient real time
obstacle avoidance in an unknown environment.
The organization of this paper is as follows. In
Section 2 we review the work of (Fox et al., 1997)
and (Brock and Khatib, 1999). In Section 3 we
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bridly outline the synthesis suggested by (Primbs
et al., 1999). Our proposed scheme is explained in
detail in Sectiord . Finally, Sectioniliscusses the
theoretical properties of our approach and Section
6 contains the conclusions.

2. THE DYNAMIC WINDOW APPROACH
AND ITS EXTENSION

The Dynamic Window approach (Fox et al., 1997)
is an obstacle avoidance method that takes into
account the dynamic and kinematic constraints of
a mobile robot (many of the vector field and vector
field histogram approaches do not). The basic
scheme involves finding the admidde control s,
those that allow the robot to stop before hitting
an obstacle while respecting the above constraints.
Then an optimization is performed over those



CLF RHC

Global information Local information

Stability oriented Performance oriented
Off-line analysis On-line computation
Hamilton Jacobi Bellman type Euler-Lagrange type

Table 1. Complementary properties of
the two approaches

admissible controls to find the one that gives the
highest utility in some prescribed sense. There
are different suggestions for the utility function
in Fox et al. (1997) and Brock and Khatib (1999),
including components of velocity alignment with
preferred direction, large minimum clearances to
obstacles, possibility to stop at goal point and
the norm of the resulting velocity vector (large
being good). Brock and Khatib (1999) extended
the work of Fox et al. (1997) by looking at holo-
nomic robots (Fox considered synchro drive ones)
and more importantly by adding to the problem
information about connectivity to the goal. The
latter was done by replacing the goal heading term
with a navigation function defined as the length
of the shortest (unobstructed) path to the goal
(Latombe, 1991; Barraquand and Latombe, 1991).
Thus, they were able to eliminate the local minima
problems present in so many obstacle avoidance
schemes (hence the term Global in the title of
Brock and Khatib (1999)). The experimental re-
sults reported in (Fox et al., 1997) and (Brock and
Khatib, 1999) are excellent, showing consistent
safe performance at speeds up to 1.0 m/s with
a Nomadic Technologies XR4000 robot, (Brock
and Khatib, 1999). The results demonstrate an
algorithm that is safe by construction (in the sense
that the robot never hits obstacles) and displays
high efficiency in extensive experimental tests.
But although Brock and Khatib argue that the
use of a navigation function makes the approach
‘Global’, it is never shown. In fact, examples can
be constructed where the robot enters a limit
cycle, never reaching the goal or actually consis-
tently moves away from the goal (see Section 4.4).

3. THE CONTROL LYAPUNOV FUNCTION
AND RECEDING HORIZON PERSPECTIVE

In a interesting paper by Primbs et al. (1999), the
connection between Control Lyapunov Functions
(CLF) and Receding Horizon Control (RHC) is
investigated. They note the complementary prop-
erties shown in Table 1. In view of these properties
they suggest the following framework to combine
the complementary advantages of each approach.
The control law is chosen to satisfy a receding
horizon optimal control problem under constraints
that ensure the existence of a CLF. The problem
becomes one of finding a control v and a CLF
V() that satisfy (1) through (4) as follows:

t+T

1nfu() / (q(.’L’) + uTu)dT (1)
st. 2 = f(z) + g(z)u (2)
V(5 + gu) < ~eo(a(t) 3)

Vet +T)) < V(z,(t+T)), (4)

where ¢(z) is a cost on states, e > 0 is a scalar, T’ >
0 is the horizon length, o(x) is positive definite
and z, is the trajectory when applying a pointwise
minimum norm control scheme (for details see
(Primbs et al., 1999)). This formulation inspires
our choice of a more formal, continuous time
formulation of the Dynamic Window Approach,
allowing us to prove convergence.

4. A PROVEN DYNAMIC WINDOW
APPROACH

4.1 Robot model, environment and mnavigation
function

In the main parts of this paper we will use the
notation z = (r,7) = (rg,ry, 74, y) for the state
of the system. We adopt the robot model from
(Brock and Khatib, 1999), which is basically a
double integrator in the plane ¥ = u, r € R?
with bounds on the control ||u|| < Ume, and
on the velocity ||#|| < Umqe. Note that it was
shown in (Lawton et al., 2001/2002) that an off
axis point on the unicycle robot model described
by r, = wcosf, 7y = vsinf, § = w, v =
F/m, w=17/J can be feedback linearized to # =
u. For the environment we assume that the robot’s
sensors can supply an occupancy grid map, i.e. a
rectangular mesh with each block being marked
as either free or occupied, over the immediate
surroundings. Thus a map can be incrementally
built as the robot moves around. We assume, as
did Brock, that the simultaneous localization and
mapping (SLAM) problem is solved for us.

A navigation function NF(r), (Latombe, 1991;
Barraquand and Latombe, 1991) basically maps
every free space position to the length of the
shortest collision free path going from that po-
sition to the goal point. It is shown in (Brock and
Khatib, 1999) how to deal with the case when the
robot at first only knows its immediate surround-
ings by use of its sensors. The idea is to assume
free space at the unknown positions and then
recalculate the navigation function when sensor
data showing the opposite arrives. In this way the
robot guesses good paths and updates them when
new information arrives. These updates are made
at a time scale much slower than the actual motion
control so in our considerations below we assume
the map to be static. Brock and Khatib (1999)



used the gradient of the navigation function as
the desired heading instead of using just the goal
direction as Fox did (Fox et al., 1997).

4.2 Control Scheme

We adopt the basic structure from Primbs et al.
(1999) as seen above, but since we have state
constraints, i.e. obstacles, we make some changes.
We state our control problem as

inf,(yecs,,, V(z(t+T)) (5)
st.F=u (6)
V(z,u) <0 (7)

where V(z) is the Control Lyapunov Function
defined in equation (8), T is the horizon length
and C' Sy, is the set of Dissipative Safely Stopping
Control Sequences of Definition 4.3 below. We
have substituted the equations (1) and (4) with
(5) since the pointwise minimum norm properties
aren’t applicable in this setting. Furthermore, the
inequality in (7) cannot be bounded away from
zero since the robot might have to stop. As can
be seen above, the Receding Horizon Control part
(5) and the dynamics (6) corresponds to the
optimization in the dynamic window of (Brock
and Khatib, 1999) and the Control Lyapunov
Function part (7) corresponds in spirit to the use
of the NF(z) to avoid local minima. Actually the
equation (7) condition will be incorporated into
the CSyss constraints; it is just stated here for
clarity. The Control Lyapunov Function is

Via) = 5T + KNF(), (8)

where NF(r) is the navigation function as ex-
plained above. The basic idea for the stability
proof is to first write the problem as a conserva-
tive system with an artificial potential and then
introduce a dissipative control term. In the con-
servative system we choose the artificial potential
to be kNF(r), where k is a positive constant.
Incorporating the upper bounds on the control
magnitude and the ones on velocity, we define the
dissipative controls as follows.

Definition 4.1. (Dissipative Controls, Cy(r,7)).

Cy(r,7) ={u:
U = Ue + Ug,
u. = —kVNF
if # = 0 then ug = 0 else
uq: uyr < —el|f|| <0,
[[u]| < umaa,
and if ||#|| > Vmaz then ul# <0}

for some given € > 0. We write u € Cy(r,7).

A typical shape of the Cy(r,7) set is shown in
Figure 1. Note that |luc|| = ||kEVNF(r)|| = k;
since NF(r) is the length of the shortest path,
[IVNFE(r)|| =1 (the decrease in the length of the
shortest path while travelling along the shortest
path is equal to the distance travelled). Thus
u. lies on a circle of radius k. The outer circle
of radius U.mq; bounds the control set. Now the

Fig. 1. The Dissipative Controls, Cqy(r,7) and
Cad(,’;)'

problem is to make sure the robot does not run
into obstacles. In the standard Dynamic Window
Approach this is taken care of by choosing among
admissible controls in the optimization and here
we shall do the same. To summarize we have the
following control system:

7 =u,
u(t) € Cd(ra 7;)7
r(t) € {Free space}

If we look closer at the set Cy(r,7) we see that if
k + € < uyqp there is a set of controls that are al-
ways included, independent of r, centered around
u= —|umaz|ﬁ, i.e. full brake (it is perhaps not
surprising that full brake is always a dissipative
strategy). We call this subset the Always Dissi-
pative Controls, Coq(7) C Cq(r,7) Vr. It is also
depicted in Figure 1. This is the set of controls
that we can always use to prevent a collision while
respecting the constraints guaranteeing stability.
Now, on our way to defining the Dissipative Safely
Stopping Control Sequences of equation (5) above
we need some more definitions.

Definition 4.2. (Safe Set, S). We call the state
xg = (ro,vp) safe if there exists a time T' > 0
and a control sequence u(-) such that

r(t) = rg, 7(t) = vg, ¥ = u implies
7t +T) =0, r(s) € {Free Space} Vs € [t,t + T,
i.e. there is a way to stop without hitting an
obstacle. We write zg € S.

Determining whether a state belongs to S can be
quite computationally expensive, since the set of



control sequences is infinite dimensional. We need
a computationally tractable way to make sure the
current state is always within S. To achieve this
we only consider a finite set of control sequences in
Cad- These are the Discretized Always Dissipative
Controls Cyuq(r) C Caq(r), i.e. control signals
that have constant magnitude and constant direc-
tion relative to the velocity direction r/||7||. The
set is depicted in Figure 3 and will be investigated
in more detail in Section 4.3 below. A set of cor-
responding trajectories can be found in Figure 2.
The strategy for avoiding collisions is to make sure
that we stay in the Safe Set S. To make this more
precise we define the Dissipative Safely Stopping
Control Sequences.

Definition 4.3. (CSgss). Given times T; and Th
a control sequence/state pair (u(-),zo) is called
Dissipative Safely Stopping if

u(s) € C Vs € [t,t+T1], 9)
C = Ca(r,#) if ||#|| > vimin or #1u > 0 else,
C = Cgaq

u(s) € Caaa(r) Vs € [t+ Th,t + T1 + To],

r(s) € {Free Space} Vs € [t,t + T} + Ts],

Ft+Th+T2) =0

i.e. it starts with a dissipative control, ends with a
discretized always dissipative control, doesn’t hit
any obstacles and stops at the end.

The somewhat awkward construction on line 2 of
equation (9) is needed in the convergence proof
(Theorem 5.1). It guarantees that the speed will
not approach zero as time goes to infinity. Instead
we make sure that if the speed drops below the
design parameter v,;,, the robot brakes and
makes a fresh start, accelerating along the shortest
path towards the goal. v,y is to be chosen small
enough so that the rule only applies in exceptional
cases. The time 77 is to be chosen at least as
big as the time step length of the controller and
T> = Umaz/(k + €) i.e. longer than the maximal
stopping time using any Cg,q control. T in (5) is
set to T = T7 + T». We will see in Theorem 5.2
below how this guarantees staying in S.

Now we are set to apply the control scheme
outlined above, i.e.

(1) Find u(-) according to equation (5).

(2) Apply the first C part of it for one time step
T, <T.

(3) Go to (1).

Remark 4.1. Note that we never actually apply
the Ty part of the control sequence. It is there to
guarantee that there always exists a dissipative
way to avoid collisions. This is similar to always

making sure you can stop in the visible part of the
road when driving a car.

Remark 4.2. Excess computational resources can
be exploited by increasing the time 7} and thereby
the time horizon of the optimization. If there on
the other hand is a shortage, the search space
can be reduced by only considering constant Cjy
controls or even a finite subset of constant ones.
As long as Assumption 5.1 is true the proofs are
still valid. In the same way the discretization set
chosen in Cy,q can be made larger or smaller.

4.8 A closer look at Cgyeq

Some resulting trajectories from applying a Cyuq
control are depicted in Figure 2.
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Fig. 2. Left: A set of trajectories with differ-
ent Cgqq controls. 79 = 1, |jul| = 1, a €
{0,5,10,...,50}, where « is the angle be-
tween v and —7. Right: Varying initial ve-
locity scales curves.

As can be seen, the four upper most trajectories
(corresponding to angles 35...50) are very close
to one another. Thus if the shortest one is not free
of collisions, the other ones probably aren’t either.
Therefore, there is no need to include controls of
angles higher than = 35 in Cy,4. As can be seen
from Figure 1, a smaller C,4 set admits a larger k
and thus a larger maximal acceleration. An angle
of 35 gives the value k = 0.8up,q5-

As will be shown in the lemma below (and seen
in Figure 2), the trajectories just scale in both
dimensions when changing initial velocity and
Umaz, SO this rule of thumb for choosing k is valid
for all cases.

Lemma 4.1. (Scaling of Trajectories). The trajec-
tory resulting from applying a constant (relative
to the velocity direction) control has the curvature

K(s) = b

(v3 + 2as) (10)

and is uniformly rescaled by a factor of

_ 0

=

when changing the initial velocity by a factor h,
and the control magnitude by a factor h,,.

h



The proof is a straightforward application of first
calculations in a moving frame and then the fact
that rescaling a curve corresponds to changing the
curvature as Kpequ(8) = %Kold(hs). We omit the
details for lack of space.

This means that we don’t have to simulate the
differential equations to evaluate equation (5). We
can just store one precalculated trajectory for
each point in the Cy,q set and scale it depending
on initial velocity and ;4. Then we determine if
the whole control sequence is safe and dissipative,
i.e. belonging to CSyss, and evaluate the utility
function.

4.4 Example of Convergence Failure of Previous
Approach

The Utility function of (Brock and Khatib, 1999)
that is to be maximized is

Q(p,v) = aalign(p,v) + Bvel(v) + ygoal(p, v),

where p,v is the resulting position and velocity
from applying a control signal for one time step.
‘goal’ is a binary function reflecting whether we
will end up in the goal position or not. In the case
when the robot is far from the goal the utility
function equals

0
ol gl

Qp,v) =a(l - —
™ Umaz

where 0 is the angle between the goal heading and
the direction of motion. Consider a ‘I’ shaped,
very narrow corridor, with the robot being in the
top left end and the goal being in the bottom end.
This will leave the robot accelerating maximally
towards the right. If the corridor is long and
narrow enough the speed is going to be too great
to allow a right turn at the intersection. Thus the
robot will continue away from the goal. And if the
corridor is narrow enough to make the velocity
term outweigh the alignment term, the robot will
keep going to the right until the corridor ends
and the admissibility constraint forces it to stop.
Thus the control scheme lacks not only global
asymptotic stability, but also global stability as
the trajectory might diverge infinitely away from
the goal.

5. PROOF OF ASYMPTOTICAL STABILITY
AND SAFETY

Consider the situation depicted in Figure 3, with
the robot halted at a position very close to an
obstacle corner. The shortest path is always com-
posed of straight line segments, grazing occupied
occupancy grids at their corners. We shall make
the following assumption.

NF(®) > NF(;)
Robot

r Shortest path
C, [¢]

NF(r) < NF(r,)
p

Continuation of Shortest path

Fig. 3. Left: The Cy,q set. Right: Note the border
between the points closer than r. to the
goal and the points further away. The angles
a,f,a+p €[0,7/2].

Assumption 5.1. Let R.(r) be the finite set of
obstacle corners r. such that NF(r.) < NF(r).
Let furthermore the robot be at rest at z(t) =
(r,0). For an arbitrary ', we assume that

Vr. € R.(r') 34 :
if ||re —r|| <6
then Jdes € CSyss -
NF(@r(t+T)) < NF(r.), 7t+T) =0
i.e. if the robot is just close enough to a corner and

standing still, there is a C'Sgs5 control sequence
that brings it to a halt beyond that corner.

Note that this is not unreasonable even in the
worst case when the angles o = 8 = 0 (see Figure
3). Before we formulate the main theorem of this
paper we need a few lemmas.

Lemma 5.1. (Control Lyapunov Function). The func-

tion 1
V(z) = §a'~Ta= +kNF(r),

is a Control Lyapunov Function and satisfies the
following inequality

V(z) < —ell7]|.

Furthermore, the decrease of V(z) between two
stops at times ¢; and ¢;;1 along trajectories satis-
fies

AV < —el

where [ is the length of the trajectory between
times ¢; and ¢;41.

Proof: The candidate Lyapunov Control Function
is V(z) = 4#T# + kNF(r), which is clearly pos-
itive definite with a global minimum at z . =
(Tgoat>0). Differentiating with respect to time
gives

V(z)=#Tu+ krTVNF(r).
=T (ue +ug+ kVNF(r) < —€l|7|],



by the constraints on w. The last part of the
Lemma is seen to hold by considering

1]

to
AV = /V dt < /(—e)||r'|| dt = —el
t1

t1

Theorem 5.1. (Asymptotic Stability). If the con-
trol scheme in (5) is used and if there is a
traversable path from start to goal in the occu-
pancy grid. Then the robot will reach the goal
position.

Proof: By Lemma 5.1 we have that V() < —e]|7]|.
Thus the system is stable in the sense of Lya-
punov. Since the control scheme does not permit
the robot’s velocity to slowly approach zero (see
equation (9)), the remaining difficulty is to show
that it does not stop infinitely many times. We
will therefore make a worst case analysis of the
situation when the robot does stop a lot of times.
We use the notation V' (r) = V(r,0) for the Lya-
punov function at a position r with zero velocity,
r=0.

After a stop at some position r;, equation (5)
makes the robot accelerate along the shortest path
to the goal. Since the dissipative accelerations are
all weaker than the Cy,q breaking controls, the
robot will have travelled at least half the distance
to the next corner r. on the path to the goal
before it has to do any evasive maneuvers and
possibly stop. This distance from r; to r, is equal
to NF(ry) — NF(r.). Therefore, between two
consecutive stops at r; and ry we have (by Lemma
51) V(’I"l) - V(T2) Z %(NF(’I‘I) — NF(TC)) But
when 7 = 0 we have V(r) = kNF(r), thus

V(1) = V(r) > (Vi) = V(o).

In the worst case this means that the robot
position will show exponential convergence (in the
number of stops) towards some corner 7, that
continues to be the closest on the shortest path
to the goal, i.e. after m stops we have

€
Virm) = V(re) < (V(r1) =V(re)) (1 = o
but since 7, is on the shortest path to the goal
Ellrm —rll] = V(rm,0) — V(r,,0) and therefore
there exists M such that

ym=1)

1
Ir =4I| < £ (V) = VD)1 = 5™ <6,
By Assumption 5.1 there now exists a control
to bring the robot to a halt beyond r.. The
minimization of (5) will thus provide a control
that makes V(z(t+7T)) < V(r.,0) and the corner
can never again be on the shortest path to goal.
Thus, even in the worst case, in a finite number
of stops all corners will be passed. ™

Note that the proof is an extreme worst case
analysis. A more probable scenario is that at each
stop the robot will face a new corner, and that
the number of stops will be very few during the
execution, see Remark 4.1.

Theorem 5.2. (Safety). If the control scheme in
(5) is used and if the robot starts at rest in an
unoccupied position. Then the robot will not run
into an obstacle.

Proof: The proof relies on the recursive structure
of CS4ss- The set CSgss (of safely stopping se-
quences that we are choosing from) is never empty
since we can always choose the remaining (not
yet applied) part of the previous CSyss control
sequence as our new C'Syss control sequence. m

6. CONCLUSIONS

In this paper we have first presented the well
known Dynamic Window Approach to fast and
safe obstacle avoidance in an unknown environ-
ment. We then recast the approach in a continuous
nonlinear control framework suggested by Primbs
et al. (1999). With a few changes to the basic
scheme we were able to prove convergence to the
goal position. This is significant since the earlier
scheme could be subject to limit cycles and even
divergence.
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