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Abstract: Virtual decomposition control is applied to control a KUKA 361 six-joint in-
dustrial robot performing hybrid tasks with a rigid unilateral constraint. In order to ac-
commodate motion/force control, the required velocity is re-designed by introducing filtered
contact forces in full control dimensions, which makes the controlled robot behave as hybrid
controlled for a known contact geometry and impedance controlled for an unknown con-
tact geometry. The real-time experiments demonstrate bouncing-free smooth rigid contact
control and asymptotic force tracking results. Copyright c©2002 IFAC
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1. INTRODUCTION

A systematic approach named “virtual decompo-
sition control” which is able to accomplish a va-
riety of control objectives without restriction on
target robotic systems has been proposed by Zhu,
et. al. (1997). The basic idea is to “cut” an en-
tire robotic system into objects and open chains.
An object is typically a rigid body for which the
motion/force control specifications are given. An
open chain is a series of rigid links connected by
joints. Thus, the control problem of a complete
robotic system is converted into multiple control
problems of each subsystem – an object or an
open chain. Structured parametric uncertainties
are handled with independent parameter adapta-
tion laws. The dynamic interaction between every
two physically connected subsystems is completely
represented by a scalar term called virtual power
flow at the cutting point between them. In this
paper, this novel control approach is applied to
control a six-joint industrial robot KUKA361 per-
forming hybrid motion/force tasks.

∗This work was supported by a Post-Doctoral Fellow-
ship awarded by the Katholieke Universiteit Leuven, Bel-
gium during 1996-1997.

2. VIRTUAL DECOMPOSITION CONTROL

With respect to a particular system - a KUKA361
robot in constrained motion equipped with a
SCHUNK force sensor F450/T45 (measurement
range of 450N and 45Nm) located at the wrist,
see Fig. 1, a “cutting point” is placed at the loca-
tion of the force sensor such that the robotic sys-
tem is virtually decomposed into one object and
one base-fixed open chain. The object is the end-
effector cut from the robot, while the base-fixed
open chain is the six-joint KUKA361 robot ex-
cluding the end-effector. A frame C is assigned
and fixed to the “cutting point”, and a frame O is
fixed to the end-effector.
The dynamic equation of the object (the end-
effector) is described as (Zhu, et. al., 1997):

MO
d

dt
(OX) + CO

OX + GO =O F , (1)

where MO ∈ R6×6 is constant and CO ∈ R6×6

is skew-symmetric. The explicit expressions of
MO, CO, and GO ∈ R6 are given by equ. (17) of
(Zhu, et. al., 1997), by replacing subscript Oi with
O; OX ∈ R6 denotes a generalized linear/angular
velocity of frame O, expressed in frame O; and
OF ∈ R6 denotes the net force/moment (includ-
ing lOi

) expressed in frame O. Since the motion
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of the end-effector is constrained with γ dimen-
sion, 0 < γ < 6 , it follows, in terms of a general
modeling approach (De Luca and Manes, 1994),
that

OX = T χ , (2)
OF = OUC

CF − Ymφm − Yfϕf , (3)

where T ∈ R6×(6−γ) is of rank 6 − γ, Ym ∈
R6×(6−γ), Yf ∈ R6×γ is of rank γ, χ ∈ R6−γ de-
notes the independent velocity coordinates, φm ∈
R6−γ , and ϕf ∈ Rγ denotes the independent co-
ordinates of the constraint force; OUC ∈ R6×6 is a
force/moment transformation matrix which trans-
forms a force/moment expressed in frame C to a
force/moment expressed in frame O; and CF ∈ R6

denotes the exerting force/moment (from the open
chain toward the object) at the “cutting point”
located at the force sensor. Therefore, CF is also
measurable in this special case.

Plate with
Three Ball Bearings

Z

X
Y

Fig. 1. The KUKA361 robot in contact with the

environment.

Remark 2.1: Note that T in (2) replaces
[ TK TD ] in (De Luca and Manes, 1994).
It implies that both pure free motion and motion
with dynamic force are handled in a unified
manner. Thus, Ym may contain zero-value
columns corresponding to pure free motion. The
orthogonality TT Yf = 0 holds according to equ.
(18) of (De Luca and Manes, 1994).

Remark 2.2: In equ. (3), φm represents the coor-
dinates of the dynamic force, see (De Luca and
Manes, 1994). In general, frictional forces, damp-
ing and spring forces of a dynamic environment
can all be modeled as φm. Without loss of gener-
ality, it is assumed that the mass properties of any
dynamic environment have been included into the
end-effector such that φm does not include any in-
ertial force. Thus, φm is state dependent and can

be expressed in terms of linear parameters

φm = Y∗
mθm , (4)

where Y∗
m is a regressor matrix being functions of

the measurable states, and θm is a corresponding
parameter vector. It follows that

Ymφm = Ymθm (5)

with Ym = YmY∗
m.

A pseudoinverse of Yf is denoted as Y #
f such that

Y #
f Yf = Iγ . Thus, matrix [T Y #T

f ] ∈ Rn×n is
invertible such that

[
T Y #T

f

]−1

=
[

ΩT

Y T
f

]
, (6)

where Ω ∈ R6×(6−γ) is a matrix defined by (6).

After Y #
f is determined, the velocity vector OX

can be rewritten as

OX = T χ + Y #T
f χf , (7)

where χf ∈ Rγ denotes the velocity coordinates
associated with the constraints. Note that χf = 0
when the constraints hold.

The required net force/moment for the end-
effector is designed as

OF r = OF ∗
r + KO(OXr −OX) , (8)

OF ∗
r

∆= YO θ̂O + Ymθ̂m + Yfϕfr , (9)

where OXr represents the required vector of OX,
and will be designed in the next section; KO is a
positive-definite gain matrix; ϕfr ∈ Rγ represents
the required vector of ϕf ; θ̂m denotes the estimate
of θm; and θ̂O denotes the estimate of θO ∈ R13 -
a parameter vector of the object and is governed
by

YOθO
∆= MO · d

dt
(OX∗

r ) + CO ·OX∗
r + GO . (10)

Note that YO ∈ R6×13 denotes a regressor matrix,
and

OX∗
r

∆= T χ∗
r , (11)

where χ∗
r ∈ Rn−γ denotes a design vector to be

specified later.

The detailed expression of θO is

θO = [mO, mO
Orx, mO

Ory, mO
Orz,

mO
Or2

x, mO
Or2

y, mO
Or2

z ,

mO
Orx

Ory − Ixy, mO
Orx

Orz − Ixz,

mO
Ory

Orz − Iyz, Ixx, Iyy, Izz, ]T

∈ R13 , (12)



where mO is the mass; Or = [Orx,Ory,Orz]T ∈ R3

denotes a vector pointing from the origin of frame
O towards the mass center, which is expressed in
frame O; Ixx, Iyy, Izz, Ixy, Ixz, and Iyz are ele-
ments of the inertial tensor around the mass center
and expressed in frame O. Each element of θ̂O is
updated by a P function defined by Zhu and De
Schutter (1999) (equ. (4) on page 311) as

(θ̂O)j = P (
(YO)T

j T (χ∗
r − χ), cOj , (θO)−j , (θO)+j

)
,

(13)
where (θ̂O)j denotes the jth element of θ̂O and
(YO)j denotes the jth column of YO, respectively,
j = 1, · · · , 13; cOj > 0 is the update gain; and
(θO)−j and (θO)+j denote the lower and upper
bounds of (θO)j (the jth element of θO), respec-
tively. The jth element of θ̂m is updated by

(θ̂m)j = P (
(Ym)T

j T (χ∗
r − χ), cmj , (θm)−j , (θm)+j

)
(14)

with cmj > 0, (Ym)j denotes the jth column of
Ym, and (θm)−j and (θm)+j denote the lower and
upper bounds of (θm)j (the jth element of θm),
respectively.

The base-fixed open chain is a special form of open
chain by setting the base velocity to zero. This
open chain has a total of 6 links and 6 joints. Joint
k, k = 1, · · · , 6, connects link k−1 with link k (link
0 is fixed to the ground). Frame Bk is fixed to the
kth link with its Z axis along the kth joint. The
dynamics of the open chain are comprised of the
dynamics of the rigid links, denoted as BkF and
characterized by (1) with frame O to be replaced
by Bk accordingly, and the dynamics of the joints
characterized by

τk
∆= I∗k · q̈k + ξk(t) + dk = τk − ZT

k
BkF , (15)

where I∗k ∈ R is the equivalent rotational inertia;
qk ∈ R is the joint displacement; ξk(t) ∈ R is
the frictional force/torque and dk ∈ R denotes a
constant uncertainty; τk ∈ R is the joint control
force/torque; τk ∈ R is the net force/torque de-
voted to the joint dynamics; BkF ∈ R6 denotes the
exerting force/moment exerted from link k−1 to-
ward link k, expressed in frame Bk; and Zk ∈ R6

is a projection vector along the kth joint axis. In
this paper, the frictional force takes the form as

ξk(t) = kcksign(q̇k) + kvk q̇k , (16)

i.e. Coulomb and viscous frictions are considered,
where kck > 0 and kvk > 0 denote the coefficients
of Coulomb and viscous frictions, respectively.

Equ. (2) in (Zhu, et. al., 1997) yields
CX =OUT

C
OX, OX =CUT

O
CX with CUO =OU−1

C .
An invertible Jacobian matrix J ∈ R6×6 is defined
such that CX = Jq̇, where q̇ = [q̇1, · · · , q̇6]T ∈ R6

denotes the joint velocities. Accordingly, the

required velocities CXr =O UT
C

OXr

and q̇r = J−1 CXr = J−1 OUT
C

OXr are obtained.
Then, BkX ∈ R6 and BkXr ∈ R6 can be obtained
recursively in terms of q̇ and q̇r.

The required net force/moment of link k, de-
noted as BkF r, is obtained by applying (8)
and (9) without the last two terms in the
right hand side of (9), replacing the subscript
O with Bk, and replacing OX∗

r with BkXr.
This forms Fr = [0T

6 ,B1FT
r , · · · ,B6FT

r ]T ∈
R42. Consequently, the required projection
force/moments along the joints, denoted as Fz

r =
[(ZT

1
B1Fr), · · · , (ZT

6
B6Fr)]T ∈ R6, are obtained in

terms of the first six rows of equ. (34) of (Zhu,
et. al., 1997) by eliminating the subscript j in all
terms and setting lj = 6 and Tj = C such that

TjFr =C Fr =C UO
OF r . (17)

Finally, the joint control τk, k = 1, · · · , 6, is ob-
tained as

τk = YJ
k θ̂J

k + kJ
k (q̇kr − q̇k) + ZT

k
BkFr , (18)

where kJ
k > 0,

YJ
k = [ q̈kr sign(q̇k) q̇k 1 ] , (19)

and θ̂J
k represents the estimate of θJ

k defined by

θJ
k = [ I∗k kck kvk dk ]T ∈ R4 . (20)

The P function is used again to update each (jth)
element of θ̂J

k in terms of

(θ̂J
k )j = P (

(YJ
k )j(q̇kr − q̇k), cJ

kj , (θ
J
k )−j , (θJ

k )+j
)

,
(21)

where j = 1, · · · , 4; (YJ
k )j denotes the jth element

of YJ
k ; cJ

kj > 0 represents the parameter update
gain; and (θJ

k )−j and (θJ
k )+j represent the lower

and upper bounds of (θJ
k )j (the jth element of θJ

k ).

It has been proven (Zhu, et. al., 1997) that
the dynamic interaction between the open chain
and the object (the end-effector) can be repre-
sented completely by a scalar term named vir-
tual power flow at the cutting point, denoted as
−WC = −(CXr −C X)T (CFr −C F ) (see (16) and
(40) in (Zhu, et. al., 1997) by setting WBj

= 0
and WTj

= WC).
Lemma 1: Consider a single arm constrained ro-
bot without kinematic singularity. In view of (3),
(8), and (17), it yields

OXr −OX ∈ L2

⋂
L∞ (22)

provided that the following inequality holds

−(OXr −OX)T [OF ∗
r − (OF + Ymφm + Yfϕf )]

≤ −V̇1 − V2 , (23)

where V1 and V2 are two non-negative continuous
scalar functions.



3. REQUIRED VELOCITY DESIGN

In this section, the required velocity OXr will be
designed to accommodate motion/force control,
while validating (23).

The principle of this design is to make the
controlled system behave as hybrid controlled to
achieve motion/force tracking in case of a known
contact geometry, and behave as impedance
controlled to achieve contact stability in case
of an unknown contact geometry or unexpected
events.

A first order filter is designed to filter the force
coordinates

˙̃η + Cη̃ = C

[
TT

Y #
f

]
OUC

CF , (24)

where η̃ = [η̃T
m, η̃T

f ]T ∈ R6, with η̃m ∈ R6−γ and
η̃f ∈ Rγ ; matrix C = diag{Cm, Cf} ∈ R6×6 is a
constant, positive-definite, and diagonal matrix
with Cm ∈ R(6−γ)×(6−γ) and Cf ∈ Rγ×γ .

Remark 3.1 : In hybrid tasks, friction is usually
involved in the free motion space. The frictional
forces are handled in two ways. First, the fric-
tional forces should be incorporated into Ymφm.
Second, a properly designed dead-zone should be
used to remove the frictional forces from η̃m.

A dead-zone filter with a constant vector Z ∈
R(6−γ), Zi ≥ 0 for i = 1, · · · , 6 − γ, is designed
as

(η̃mz)i =




(η̃m)i − Zi (η̃m)i > Zi

(η̃m)i + Zi (η̃m)i < −Zi

0 otherwise
, (25)

where (η̃mz)i and (η̃m)i denote the ith elements
of η̃mz and η̃m, respectively, and η̃mz denotes the
output of the dead-zone filter.

Finally, the required velocity is designed, in terms
of (7), as

OXr = T (χr −Amη̃mz) + Y #T
f (χfr −Af η̃f ) (26)

together with

χ∗
r = χr − Amη̃mz , (27)

where Am ∈ R(6−γ)×(6−γ) and Af ∈ Rγ×γ are
two constant, positive-definite, and diagonal
matrices with small elements; χr ∈ R6−γ denotes
the required velocity coordinates associated with
the free motion; and χfr ∈ Rγ is a design vector
associated with the constraint force.

Remark 3.2 : The required velocity designed by
Zhu, et. al. (1997) takes the form as Tχr. Thus,

the design by (26) can be viewed as a re-design.

In normal circumstances with χf = 0, it
can be checked that (23) holds by specifying
χ̇fr + Cfχfr = AfCfY #

f
OF ∗

r ,

V1 = 1
2

[
(χ∗

r − χ)T T T MOT (χ∗
r − χ)

+(χfr − Af η̃f )T C−1
f A−1

f (χfr − Af η̃f )

+
∑13

j=1
((θO)j − (θ̂O)j)

2/cOj

+
∑

j
((θm)j − (θ̂m)j)

2/cmj

]
, and

V2 = (χfr − Af η̃f )T A−1
f (χfr − Af η̃f ).

It yields
OXr −OX ∈ L∞

⋂
L2 . (28)

Under bounded χ̇r and χ̇fr, it follows that (Tao,
1997)

OXr −OX → 0 . (29)

Hence, this leads to

χr − χ − Amη̃mz → 0 , (30)
χfr − χf − Af η̃f → 0 . (31)

Equ. (30) represents a motion tracking equation
for both free motion and contact motion involving
dynamic force Ymφm. In normal circumstances
during free motion, the force coordinates φm are
bounded. By appropriate choice of the dead-zone
parameters in (25), zero η̃mz can be obtained.
Equ. (30) changes to χr − χ → 0. This is a
velocity tracking equation, where χr denotes
the required velocity coordinates. Note that
position/orientation control can be accomplished
by setting χr = χd + ΛE , where χd denotes
the desired velocity coordinates, Λ is a diagonal
positive-definite matrix, and E denotes a term
relevant to the position/orientation errors subject
to

∫ t

0
(χd − χ)T ΛEdt ≥ −γ0 with γ0 > 0. Two

examples in (Zhu, et. al., 1997) show that both
linear position errors in SE3 and nonlinear
orientation errors in SO3 satisfy this inequality.

Equ. (31) describes the rigidly constrained mo-
tion. In normal circumstances, χf = 0, χfr rep-
resents the desired filtered contact force scaled by
Af . In the approach motion with unilateral con-
straint (ϕfr = 0 in (9)), (31) becomes an approach
velocity control equation. Note that χf in (31)
provides damping to the system, which plays a key
role for keeping contact stability during transition
phases from approach motion towards constrained
motion for unilateral constraints.

4. EXPERIMENTAL RESULTS

A real-time control system consisting of five T800
transputers is used. A sampling frequency of
400Hz is used to calculate the feedback control
part, while a sampling frequency of 100Hz is
used to calculate all dynamics compensation,
parameter adjustment, kinematics, and filtered



force feedback. In the experiments, SI units are
used unless otherwise specified.

The KUKA361 robot, illustrated in Fig. 1, weighs
300kg with 8kg payload capacity. The lengths
of links 2 and 3 are 0.48m and 0.645m, respec-
tively. Coulomb friction of the first three joints
amounts to 40Nm, 35Nm, and 15Nm, respectively.

The three ball bearings located at the end-effector
guarantee a planar contact with the 10mm thick
steel plate put on a steel base. The X and Y axes
lie in the contact plane and the Z axis is normal
to the contact plane. During constrained motion,
the linear motion along the X and Y axes and the
rotational motion around the Z axis belong to the
motion space, while the linear motion along the Z
axis and the rotational motion around the X and
Y axes belong to the constraint space. This yields

T =




1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1




, Yf =




0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0




,

χ represents the linear velocities along the X
and Y axes and the angular velocity along the
Z axis, and ϕf represents the force along the Z
axis and the moments along the X and Y axes.
The pseudoinverse of Yf is chosen as Y #

f = Y T
f .

Thus, it follows that Ω = T . Accordingly, we
have Ym = T . The corresponding coordinates φm

represent the frictional force/moments along the
motion space spanned by T .
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Fig. 2. Force regulation along Z axis with a rigid

end-effector.

The experimental results are demonstrated in Fig.
2 to Fig. 6. Fig. 2 shows the force regulation re-
sult along the Z axis, when the end-effector with
three ball bearings contacts the very rigid steel
plate put on a steel base. The force feedback
gain and the filter parameter along the Z axis
are Af = 0.0005 and Cf = 8.0. In Fig. 2, the
dashed line denotes the desired force, while the
solid line denotes the measured force. The exper-
iment starts by setting the desired force to 20N .

As a result, the robot automatically moves toward
the unilateral constraint with an approach speed
around Af×20N ≈ 10mm/s . After the contact is
established right before t = 10s, a small force over-
shoot is observed. However, there is no bouncing
during the contact. Afterwards, the robot main-
tains a very good force regulation for both step
and ramp inputs.
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Fig. 3. Hybrid Control of KUKA361 with known

contact geometry.
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contact geometry.

Figs. 3 & 4 show the experimental results
for hybrid motion. In the 3 DOF motion
space, position/orientation control is accom-
plished by specifying χr = χd + ΛE , where
Λ = diag{3.0, 3.0, 15.0} and E denotes the po-
sition/orientation errors subject to Ė = χd − χ.
The force feedback gains and the filter parameters
are Af = diag{0.00025, 0.005, 0.005} and Cf =
diag{8.0, 10.0, 10.0}. Fig. 3 illustrates the posi-
tion errors in X and Y axes, and the force track-
ing in Z axis (the dashed line denotes the desired
force and the solid line denotes the actual force),
respectively. Fig. 4 illustrates the moment errors
in X and Y axes, and the orientation error in Z
axis, respectively. The robot starts by giving a
desired contact force 40N in Z axis. The rigid
end-effector approaches the steel plate at a speed
around Af1 ·40N ≈ 10mm/s. After the contact is
established right before t = 10s, the actual force
in Z axis tracks the desired force precisely and the
moment errors in X and Y axes converge to zero
quickly. At t = 20s, the robot starts to move in Y
axis at a speed of 30mm/s. The motion stops at
t = 27s. There are small disturbances on the force



tracking and on the moment errors during the mo-
tion, due to the very rigid contact. Note that after
the contact is established, the force overshoot in
Z axis is much smaller than that in Fig 2. This is
because a small Af (0.00025 compared to 0.0005
in Fig. 2) is used in Z axis.
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Fig. 5. Hybrid Control of KUKA361 with unknown

contact geometry.
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Figs. 5 & 6 demonstrate the robustness of the
controlled system against geometrical uncertain-
ties. The steel plate is artificially inclined 5.5 deg.
around X axis, but this is unknown to the robot.
The robot approaches the steel plate as usual.
After one rolling bearing contacts the inclined
plate (t = 5s), there is a constant moment acting
on the end-effector (−2.5Nm around X axis).
This constant moment changes the orientation
of the end-effector automatically until all three
rolling bearings are contacting the steel plate
(t = 12s). This procedure takes about 7 seconds,
see Fig. 5. The time period is determined by the
inclination angle, the given contact force, and Af

(0.005). When the robot starts to move in Y axis
with a speed of 30mm/s at t = 20s, the contact
force in Z axis is lower than the desired value,
since the inclined plate results in a non-zero
velocity in Z axis.

Remark 4.1 : The control parameters to be
adjusted are very limited. These parameters
include Λ, Am, Cm, Af , and Cf . Many other
parameters, such as the feedback gains and the
parameter adjustment gains, remain unchanged.
All the control gains are set approximately to

half of their critical values that start to make the
system chatter.

Remark 4.2 : The robot has 13 × 6 + 4 × 6 = 102
parameters. Each parameter can be updated
independently. Since it was very hard to identify
these parameters accurately, the upper and lower
bounds of those parameters are chosen manually.
Some of them may be incorrect. However, the
experiments still demonstrate very robust mo-
tion/force control results despite of the inaccurate
parameters. The estimate of dj defined by (21)
results in a strong integral control against the
disturbances and the parameter uncertainties in
the joint, and leads to a zero steady error.

Remark 4.3 : This paper successfully realized rigid
contact control. Compared to a recent publication
(Ferretti, et. al., 1998), the proposed controller
exhibits smooth transition performance with zero
steady tracking error. The success of the smooth
rigid contact control and the force regulation is
due to the required velocity design which takes ad-
vantages of both impedance control (which makes
smooth rigid contact control possible) and hybrid
control (which makes motion tracking and force
regulation possible).

5. CONCLUSION

In this paper, an experimental verification of “vir-
tual decomposition control” has been conducted
using a six-joint KUKA361 industrial robot per-
forming hybrid tasks with a rigid unilateral con-
straint formed by a steel plate put on a steel
platform. The experimental results have demon-
strated bouncing-free rigid contact control stabil-
ity and force regulation capability.
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