Copyright © 2002 IFAC

15th Triennial World Congress, Barcelona, Spain

ANALYSIS OF SAFETY PROPERTIES IN THE
SYNTHESIS OF DISCRETE-EVENT CONTROLLERS

A. Sanchez! R. Gonzalez A. Michel

Dept. of Elec. Eng. and Comp.
Centro de Investigacion y Estudios Avanzados (CINVESTAV)
Apdo. Postal 81-438, Guadalajara 45091, Jalisco, Mezico

Abstract:

An “ad-hoc” formal framework is proposed for the analysis of three types of safety
specifications describing the conditional execution of finite sequences of controlled
events. The notion of a specification set free of errors and redundancies is introduced
as a minimal set of consistent specifications as well as procedures to establish it. The
satisfiability verification of the specifications by the closed—loop behavior model is also
discussed. The use and advantages of the framework are illustrated with the synthesis
of a class of discrete-event controller, termed procedural controller, for the operation
of an industrial batch chemical reactor. Conflicts on the specification set were easily
identified and corrected, reducing the synthesis effort. Satisfiability verification of the
specifications by the closed-loop behavior establishes to what extent the controller

fulfills the specifications.

Keywords: discrete—event control, formal specification, verification, batch processing

1. INTRODUCTION

Formal synthesis of controllers for event-driven
operations using automata-based methods is fre-
quently carried out employing a discrete event
model of the process and a set of closed-loop be-
havior specifications established by the designer.
The synthesis goal is to find a discrete-event
controller that restricts the closed-loop behavior
to a trajectory set fulfilling structural invariants
(e.g. controllability) while satisfying maximally
the set of specifications. The plant model and
the specification set is frequently assumed to be
initially free of errors, which in few occasions is the
case. Thus, the synthesis task becomes an iterative
procedure in which plant or specification models
are modified in each iteration, until obtaining a
satisfactory result. In most cases, not to mention
large systems, it is very difficult to identify errors
or inaccuracies in models either with incremental
or monolithic specifications. Besides, the synthe-
sis procedure itself can be computationally very
expensive and time consuming.

L Corresponding author. e-mail address: ar-
turo@gdl.cinvestav. mx. Fax: +52 3134 5579

This paper proposes an “ad-hoc” formal frame-
work to facilitate the synthesis of a class of
discrete-event controllers for finite trajectories,
termed procedural controllers, for three types of
safety specifications describing the conditional ex-
ecution of sequences of controlled events. A proce-
dural controller is capable of forcing the execution
of controllable transitions by preempting uncon-
trollable events. Alsop et al. (1996) showed the
applicability of these discrete-event controllers in
the batch processing industries. The framework
helps the designer i) to capture these specifica-
tions, ii) to analyze the specification set and ini-
tiate the actual controller synthesis with a spec-
ification set free of errors and redundancies and
iii) to determine what specifications are satisfiable
by the obtained closed-loop behavior. Thus, once
the controller has been synthesized, the designer
can establish to what extent the behavior being
specified is part of the closed-loop trajectory set.

The paper presents in section 2 the modeling of
a discrete-event process using standard automata
as well as the notion of semitrajectory as a state-
assignment sequence. The definition of procedu-
ral controller is also presented together with an
explanation of the type of processes in which

this class of controllers can be used. Section 3
introduces the definition of three types of safety
properties realized as semitrajectories with spe-
cific semantics. The types considered are: 1) given
an operation state, a set of control commands
is executed sequentially, 2) given the occurrence
of a process event, a set of control commands is
executed sequentially, and 3) given an operation
state, a set of control commands are disabled. The
notions of a minimal set of consistent specifica-
tions and satisfiability by the closed-loop behavior
are introduced in sections 4 and 5. The paper then
describes, using an example, how to incorporate
these ideas in the synthesis of a procedural con-
troller for the filling operation of a batch chemical
reactor. The specification set for this operation
was generated and thoroughly checked manually
by a designer familiar with the reactor opera-
tion. Using the chosen synthesis procedure, the
obtained controller was manually checked to the
designer satisfaction. In a second exercise, using
the proposed framework, inconsistencies among
the specifications were spotted and, more impor-
tantly, it was found that the closed—loop behavior
did not satisfy the specification set. The paper
closes discussing what are the benefits of using
this framework.

2. THE MODELING FRAMEWORK

A discrete—event process of finite trajectories is
modeled in the standard fashion by a finite state
machine (FSM) P = {Q, V, X, 4, qo, Qm }, where

e () is the state set.

oV = {v1,v9,...,v,} is the state—variable
set with n, state variable number. A state-
variable v; takes values from a finite domain
D; plus the distinguished symbol co meaning
“any value”.

e Y is the transition set, divided into two
disjoint sets: ¥, (uncontrollable transitions)
and X. (controllable transitions).

e §: X x(Q — @Q,is the state—transition partial
function,

e (o is the initial state.

Q. is the marked states set.

A transition 7 is enabled in state q if §(q,7) is
defined.

Definition 1. (Assignment). An assignment over
the state-variable set s : V. — D is defined by
the rule v; »— s(v;) for i = 1,...,n, where D is
the union of the state-variable domains including
the distinguished symbol co. The assignment s is
represented by an n-tuple (s(v1),s(v2),...,s(vs))
fori=1,...,n.

For each state ¢ € @, an assignment can be
associated by a function 8 : @ — A, defined

by B(q) = sq where A is the set of all possible
assignments. Notice that 3(q) is not injective, thus
it is possible to have two states with the same
assignment.

Definition 2. (Non-executable transition set). For
an assignment s such that S(q) = s for some
q € @, the set of non-executable transitions of
s is given by net(s) = {r € X|r is an enabled
transition in any ¢ with assignment s which, by
design, is not permitted to occur}.

Definition 3. (Semitrajectory). A semitrajectory
of length m+1 is a finite mixed sequence of assign-
ments and transitions 7 = s;'s]*...”™ s, . The
relationship between assignments and transitions
is established by v : Ax ¥ — A with the following
rule: for s;11 = 7(s;,7), there exists exactly one
Jj € {1,2,...,n} such that s;41(v;) # s;(v;) and
for all k = 1,...,n such that j # k, s;y1(vg) =
S; (Uk).

Definition 4. (Covering (refinement)). The assign-
ment s covers assignment s’ (equivalently, s’ re-
fines s) if and only if there exist at least one
j€{1,2,...,n} such that s(v;) = oo, s'(v;) # 00
and for all ¥ = 1,2,...,n such that j # k,
s(vg) = s'(vg).

Sanchez et al. (1999) introduced the control de-
vice used in this work, termed procedural con-
troller. It is modeled as well as an FSM C =
{X, %, v, &g, X;n}, where

e X is the state set

e Y is the same transition set as in the process
model

e v: ¥ x X — X, is the state-transition
partial function.

e 1 is the initial state

e X, is the marked states set

In particular, for each z € X, 0 € ¥ such that
v(o,x) is defined, one of the following is true:

(1) 0 € ¥, and for all o, € X, v(o.,x) is
undefined.

(2) 0 € X, and for all o' # 0 € X, (o', z) is
undefined.

That is, a procedural controller can either be in: 1)
a state in which one of a set of uncontrollable tran-
sitions occurs or 2) a state in which the execution
of the only controllable transition defined is en-
forced. It is assumed that a procedural controller
acting synchronously with a process preempts the
occurrence of any uncontrollable transition that
can occur from the current process state. Even
though this assumption of preemption may ap-
pear to be strong, it is largely a modeling issue,

which in particular is, in most cases, true for the
type of process plants considered here (i.e. batch
processing facilities with relatively slow dynamics
and mostly of procedural nature). That is, if a
controllable transition has slow dynamics, it can
always be partitioned into two transitions: a fast
controllable one, representing the execution deci-
sion and an uncontrollable transition, representing
the slow system response to that decision. Sanchez
et al. (1999) presented conditions of existence of
a procedural controller and closed-loop invariant
properties. The procedural controller FSM is de-
fined in such a way that no decision branching
points exist (i.e. there is no need for an external
mechanism to decide which controllable transi-
tion to execute at a given state) and the closed—
loop behavior equates to the controller behavior.
Sanchez et al. (2001) argues that this facilitates
the refinement and translation of the procedural
controller into control code or hardwired logic.

3. SPECIFICATION OF SAFETY
PROPERTIES

A safety specification informally states that “some-
thing bad” does not happen during execution (e.g.
mutual exclusion, deadlock freedom, first-come-
first-serve). When dealing with batch processing
plants, we have found that most of behavior de-
scribed by operating procedures used as specifica-
tions for designing discrete-event controllers can
be described in terms of forbidden states and the
following three situations:

(1) Given an operation state, a set of control
commands is executed sequentially.

(2) Given the occurrence of a process event, a set
of control commands is executed sequentially.

(3) Given an operation state, a set of control
commands are forbidden to occur.

The formalization of these three types of safety
properties as semitrajectories are introduced in
the following paragraphs.

Definition 5. (Type 1 Safety Specification). Semi-
trajectory m = sJ'si? ...™™ sy, of length m+1 with
m > 0 models a type 1 specification. so represents

the initial assignment of .

Definition 6. (Type 2 Safety Specification). Semi-
trajectory m = sJ'si? ...™™ sy, of length m+1 with
m > 0 models a type 2 specification if and only if

So COvers Si.

~(s0,7) is used as the initial assignment s; from
where the rest of 7 is executed. This semitra-
jectory is a compact way of representing the
triggering by a transition of a sequence. This
type of semitrajectory will be written as © =

507 871285 ... 5, where expression A7y indicates

the emphasis over the execution of the event

Definition 7. (Type 3 Semitrajectory). A semitra-
jectory of type 3 is a two-assignment semitrajec-
tories of the form 7 = sfsi, where s and s; are
fixed assignments whereas 7 can be any transition
such that y(sg,7) = s; and 7 does not belong to
set net(so). So is the initial assignment. This type
of semitrajectory will be written as m = sY7 s

4. THE MINIMAL SET OF CONSISTENT
SEMITRAJECTORIES

Definition 8. (Consistent semitrajectories). Semi—
trajectories m; and 7y are consistent if and only if
one of the following is true:

(1) Initial assignments of 71 and 72 are not equal
and do not cover each other.

(2) If condition 1 is not true and semitrajectories
are not of type 3, then they must coincide
after the initial assignments.

(3) If condition 1 is not true and only one semi-
trajectory declares the execution of transi-
tion 7 from its initial assignment, then the
other semitrajectory must not forbid the ex-
ecution of such transition.

Definition 9. (Duplicate semitrajectories). Semi—
trajectories m; and 7 are duplicated if and only
if their initial assignments are

(1) either equal or one assignment covers the
other and

(2) either coincide after the initial assignment
or, for specifications of type 3, at least one
transition of net(sg)of m belongs to net(so)
of 2.

Definition 10. A set of consistent semitrajectories
is a set in which all semitrajectories are mutually
consistent.

Definition 11. A minimal set of consistent semi-
trajectories is a set of consistent semitrajectories
without duplications.

A minimal set of consistent semitrajectories can
be obtained by direct application of definitions
8 and 9. Computational procedures were imple-
mented to carry out the required matching calcu-
lations.

5. SEMITRAJECTORY SATISFIABILITY IN
THE CLOSED-LOOP MODEL

A semitrajectory @ = s3's7?...7" s, of length r +
1 with » > 0 is accepted by an FSM M, =
{X,V, X, p, &g, X,n} where

e X state set.

e VV is the state variable set of the process
model with assignments given by f(z;) = s;
fori=1,...,r+ 1.

¥ is the transition set of the process model.
p: X XX — X such that if y(s;, 7) is defined
in 7, then p(z;,7) is defined in M.

The initial state zg contains the initial as-
signment of .

o X,, = {z,} is the set of marked states.

A semitrajectory m accepted by an FSM M,
is satisfiable by a closed-loop FSM Mo, =
{C, V, 2, n, co, Cp, } if and only if

e Each state-assignment [(z;) of state z; in
M, is equal to or covers at least one state-
assignment f3(c) of M¢y.

e If p(x;,7) is defined, then 7(c, 7) is defined.

That is, the FSM M, fits at least once into
the closed-loop FSM M. Thus, semitrajectory
satisfiability by the closed-loop model can be es-
tablished by using a standard searching strategy.
The current computer procedure implementing
the verification of specification satisfiability out-
puts whether a given specification is satisfied by
the closed-loop model. Otherwise, it is indicated
what condition was not fulfilled.

6. USING SEMITRAJECTORIES IN
PROCEDURAL CONTROLLER SYNTHESIS

When synthesizing discrete-event controllers us-
ing explicit calculations it is common practice to
model both the discrete-event process and the
specification set as FSMs in such manner that
their synchronous product is used as the basis
for calculating a maximal state-transition struc-
ture (e.g. the supremal controllable language in
supervisory control theory proposed by Ramadge
and Wonham (1987) or the maximal controller su-
perstructure in the case of procedural controllers
proposed by Sanchez et al. (1999)). From this
structure, a control device is obtained, which is
minimally restrictive with respect to the specifi-
cations and fulfills closed-loop invariants. As men-
tioned in section 1, in our experience, when syn-
thesizing a controller it is common to spot errors
and inaccuracies in both the process and spec-
ification models. Thus, the synthesis procedure
becomes an iterative task in which process and
specification models are modified in each iteration
until obtaining a satisfactory result. In particular,

when synthesizing controllers for large systems
it is common to declare the desired closed-loop
behavior using a set of FSM specifications. By
using the minimal set of consistent specifications,
the synthesis effort can be reduced substantially
because this set is free of internal inconsistent
behavior and does not contain repeated specifica-
tions. Thus, if the resultant closed-loop behavior
does not satisfy some of the specifications is due
only to controllability restrictions. With this infor-
mation at hand, the designer can decide what to
modify (either the process or specification models)
and how in order to improve the controller design.

A constructive definition of a synchronization op-
eration is proposed here to be used as part of the
synthesis procedure. The compact representation
and size of semitrajectory FSMs are exploited to
reduce the computation effort employed to carry
out this operation.

Let M, a discrete—event process model and M,
the FSM accepting a assignment sequence induced
by a given specification. The composition M =
M, || M is obtained by the following procedure:

(1) Duplicate M,

(2) For all ¢, € Q, such that 3(gp) equals or is
covered by S(z,), do
(a) For specifications of types 1 and 2:

(i) If 6,(xr,,7) is defined then make
op(p;T) = Gn, and p(qp,7') un-
defined for all 7/ # 7 where ¢y, is
a new state of M, with B(gn,) =
B(0p(ap, 7))

(ii) For i = 1 to r — 1, if 6pi(xp,,7) is
defined, then do 6,(¢n;,7) = Gniy,
such that gy, is a new state in M,
with B(gn,, = 7(B(qn,),7)-

(b) For semitrajectories of type 3:

(i) If 0p(gp,7) is defined for some 7 €
net(sy,,), then change it to unde-
fined.

The complexity of the operation is O(ab), where a
and b are the number of states of the process and
semitrajectory models, respectively.

7. EXAMPLE

The use of the proposed framework is illustrated
with the synthesis of the control logic for the
operation of a batch chemical reactor (shown in
figure 1) currently installed in a special lubricants
factory. The reactor is controlled by a PLC exe-
cuting the high level operating procedures for nor-
mal, abnormal and emergency operations. Here
the synthesis of the control logic for normal, ab-
normal and recovery operations during the filling
phase is used as an example. Table 1 includes
the process and software components involved in

the operation, together with FSMs modeling their
discrete-event behavior. States are identified by
numbers as indicated in parenthesis in the re-
spective columns. Uncontrollable transitions are
marked with an *. The rest of the transitions are
commands that the PLC can use to control the
process. All initial and marked states are labeled
with (0). The objective of the phase is to feed into
the reactor a measured amount of a component
from a warehouse location. The filling starts when
the operator inputs the volume set point into the
PLC and toggles the “start” button (B1) in the
operation console. The PLC then sends the com-
mands to open valves FV1 and FV2 and verifies
that the valves opened successfully. If this is the
case, it issues the command to start pump P1
and initializes the volume totalizer. Once the set
amount has been fed to the reactor, the PLC sends
commands to reset the totalizer, to switch off
the pump and to close valves. During the filling,
the operator can stop/restart the operation by
toggling button B1l. The PLC must be able to
stop and resume safely the filling. If any of the
valves shuts during the filling, pump P1 must be
turned off and the controller must try to open
the offending valve. If the procedure does not
succeed or the operator presses the emergency
button, the controller blocks any possible action
of the operator, then issues the command to stop
the pump and shuts any valve still open. Once
the emergency button is pressed, the operation is
aborted.

7N
POSITION
INDICATOR FV2

7N
POSITION
INDICATOR FV1

VOLUME

START/STOP
BUTTON
B1

EMERGENCY|
BUTTON
ES

VOLUME
SET POINT

Fig. 1. Diagram of batch reactor

The designer captured the operation described
above using 12 semitrajectories which were ex-
haustively checked by hand. The semitrajectories
are shown in table 2. Notice that all specifica-
tions start with an assignment (i.e an operational
state). Semitrajectories 1 and 7 which are specifi-
cations of type 2. The rest are of type 1. They are
classified in three categories: normal operation,
emergency operation and recovery procedures. For
each specification, a natural language statement is
given, followed by the associated semitrajectory.

Compnt Transitions

Lbl | Description [from st. | to st.
B1 11* | switchOn off (0) on (1)
button 12 switchOff on (1) off (0)
emerg. 21*% | switchOn off (0) on (1)
stop on (1) off (0)
button
vol. 31 FeedSP NotInic (0) | Inic (1)
set pt. 32 NoSP Inic (1) NotInic (0)
vol. tot 41* | volOK clear (0) OK (1)
flag 42* | clear OK (1) clear (0)
Fv2 51 openFV2 closed (0) open (1)
valve 52 closeFV2 open (1) closed (0)
FV2 61* | FV2opens closed (0) open (1)
pos. ind. || 62* | FV2closes open (1) closed (0)
FV1 71 openFV1 closed (0) open (1)
valve 72 closeFV1 open (1) closed (0)
FVi1 81* | FVlopens closed (0) open (1)
pos. ind 82* | FVlcloses open (1) closed (0)

91 startPmp off (0) strtng (1)
pump 92* | pmpStarts strtng (1) on (3)
status 93 stopPmp on (3) stppng (2)

94* | pmpStops stppng (2) off (0)

Table 1. Elementary components of re-
actor and their associated FSM models
(* = uncontrollable transition).

In order to present these semitrajectories in a
concise manner, only the first state assignment
is shown. For subsequent states, it is indicated
only what state variable number changed and to
what value after the execution of the indicated
transition. The process model was built as dis-
cussed in Sanchez (1996) and the synthesis of
the procedural controller was then carried out
using the available tools. The sizes of the process
model and resultant procedural controller was of
1024 and 124 respectively. Satisfaction of each
semitrajectory by the controller was then man-
ually verified to the designers satisfaction. Before
translating the resulting FSM into programming
code, a second verification round was carried out
using the framework proposed here. It was found
that the specification set was inconsistent and not
minimal. Duplication was spotted in semitrajec-
tory 2 and 11. Both specification command to
start the pump when the process is ready for the
filling. The duplicate behavior was attributed in
this case to an oversight of the designer. More
importantly, it was found that semitrajectories 8
and 9 were inconsistent. Their initial assignments
did not fulfil definition 4. That is, state-variable 3
was covered in specification 8 while it was refined
in specification 9 and state-variables 5 and 7 were
covered in specification 9 while they were refined
in specification 8. This caused that there were 8
state assignments being shared by both variable
sets which lead to the inconsistent behavior. In our
experience, this is a common situation during the
design of a controller. Exhaustive or systematic
analysis (e.g. HAZOP, FMCA) that could spot
this type of problems are not frequently carried
out, unless regulations demand it.

Normal Operation

1. If button B1 is toggled, then PLC issues
commands to open FV2 and FV1
(0,0,0,0,0,0,0,0,0) A (1:1)51(5:1)71(7:1)

2. Once valves are open, then PLC issues command
to start pump
(1,0,0,0,1,1,1,1,0)°/(9 : 1)

3. If pump is successfully started, then the volume
set point is feed to the totalizer
(1,0,0,0,1,1,1,1,3)3%(3 : 1)

4. Once volume amount is reached, B120 is toggled,
set point flag returns to not initialized and the PLC
issues commands to close valves and stop pump.
(1,0,1,1,1,1,1,1,3)'2(1: 0)32(3: 0)52(5 : 0)72(7: 0)93(9 : 2)

Emergency Operation

5. If FV2 shuts while filling up, then the PLC issues
the command to stop pump
(1,0,00,0,1,0,00,00,3)%(9 : 2)

6. If FV1 shuts while filling up, then the PLC issues
the command to stop pump
(1’ 07 o0, 07 o, 00, 1a 07 3)93 (9 : 2)

7. If emergency stop is activated, then button B1 is
freed and operation cannot start again
(1,1, 00,00, 00, 00, 00,00,00) A2 (1:0)

8. Once the emergency stop has been activated and the
filling was under way, then the PLC must

issue commands to close valves FV2 and FV1
(0,1,00,0,1,00,1,00,0)%2(5 : 0)62(6 : 0)

9. Once the pump is off, clear the volume set point
(07 17 17 07 00, 00, 00, 00, 0)32(3 : 0)

10. If emergency stop is activated and pump is on, then
the PLC must issue a command to stop pump
(0,1, 00,0, 00, 00,00, 00,3)?3(9 : 20)

Recovery procedures

11. After restarting normal operation, valves were
opened successfully and pump is off, then the PL.C must
issue a command to start pump
(1,0,00,0,1,1,1,1,0)°1(9 : 1)

12. After restarting normal operation, if valves were
closed, then the PLC issues the commands to open them
(1,0,1,0,0,0,0,0,0)% (5 : 1)61(6 : 1)

Table 2. Semitrajectories for filling
phase

By verifying satisfiability of the specification set,
it was found that specifications 9 and 12 were not
satisfied by the closed-loop model . In the case
of specification 9, this was due to the inconsis-
tency detected previously. For specification 12, it
was found that it was not possible to reach in a
controllable manner a state with the assignment
declared as initial in the specification. In a second
exercise, specifications 11 and 12 were eliminated
from the specification set. Specifications 9 was
modified as shown in table 3 to avoid shared state
assignments with specification 8. Using the mod-
ified specification set (minimal and consistent),
the newly synthesized controller was the same
as the previous controller. All specifications in
the minimal set were satisfied by the closed—loop
model.

9. Once the pump is off, clear the volume set point
(0,1,1,0,0, 00,0, 00,0)32(3 : 0)
Table 3. Modified semitrajectory for
specification 9

8. CONCLUSIONS

Obtaining the same results in both exercises in-
dicates that, although the controller guarantees a
safe (i.e. controllable) closed-loop behavior, it was
not known what the controller was actually con-
trolling. From a practical point of view, this is not
acceptable for any real process. Although it is not
essential for the controller synthesis to debug the
specification set to a minimal and consistent one,
it was very useful for the better understanding of
the controller role.

References

N. Alsop, L. Camillocci, A. Sanchez, and S. Mac-
chietto. Synthesis of procedural controllers
- Application to a batch plant. Computers
and Chemical Engineering, 20(Suppl.):S1481-
51486, 1996.

P. J. Ramadge and W. M. Wonham. Modular
feedback logic for discrete event systems. SIAM
Journal of Control and Optimization, 25(5):
1202-1218, 1987.

A. Sanchez. Formal Specification and Synthesis
of Procedural Controllers for Process Systems.
Lecture Notes on Control and Information Sci-
ences, v. 212, Springer—Verlag, 1996.

A. Sanchez, G. Rotstein, N. Alsop, and S. Mac-
chietto. Synthesis and implementation of pro-
cedural controllers for event—driven operations.
AIChE Journal, 45(8):1753-1775, 1999.

A. Sanchez, G. E. Rotstein, N. Alsop, J. P.
Bromberg, C. Gollain, S. Sorensen, S. Macchi-
etto, and C. Jakeman. Improving the devel-
opment of event-driven control systems in the
batch processing industry. A case study. ISA
Trans., 2001. In press.

Acknowledgements. Partial financial support
from CONACYT (grant 31108U) and the use of
the application example from Interlub S.A. are
kindly acknowledged.

