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1.  INTRODUCTION

Iterative learning control (ILC) develops controllers
that aim to produce zero output tracking error by
repeating a task over and over many times.  ILC is
capable of eliminating the effects of unknown
repeating disturbances on the system output
automatically if such disturbances are present.  After
each repetition or trial, the system is reset and the
learning controller makes a correction to the input to
be used in the next trial.  A summary of past and
recent developments of the field can be found in Bien
and Xu (1998).  The vast majority of ILC laws in the
literature are based on the tracking error and the
control input of the previous trial alone. This is
referred to as first-order ILC.  Recently, there has
been considerable interest in using information from a
number of past repetitions to determine the current
control input correction.  This strategy has been
referred to as higher-order ILC.  For example, it was
noted in Bien and Huh (1989) that the use of higher-
order ILC could sometimes result in an improved rate
of convergence over the first-order approach.
However, Moore (1999) argued that the real value of
higher-order ILC was to mitigate the effects of
disturbance and noise.  Recently, it was found in
Phan, Longman, and Moore (2000) that certain
higher-order ILC laws have their first-order
equivalents.  Thus the real value of higher-order ILC
is still an open question.

Against this background, one fundamental question
remains unanswered: Under what conditions do
higher-order ILC automatically arise? To answer this
question, we take advantage of a previously
developed repetition-domain formulation of ILC,
which allows the problem to be put in modern control
form, so that typical modern control techniques can
be applied to derive ILC laws. In this paper, a rather

comprehensive set of such mechanisms is explored,
including higher-order model structure, minimization
of various quadratic cost functions, ILC designs based
on predictive control, pole placement, indirect and
direct adaptive control, and noise filtering.  We will
show that most of these possibilities do not result in
higher-order ILC. Only a non-standard case of pole
placement where the order of the controller is higher
than the order of the system, and a case of noise
filtering result in ILC laws with orders higher than
one.  This study helps explain why it has seemed
difficult to justify the need for higher-order ILC in
spite of the fact that the idea itself appears so natural.

2.  REPETITION-DOMAIN REPRESENTATION

We now describe a repetition-domain representation
first formulated in Phan and Longman (1988) that is
particularly convenient for subsequent ILC design
and analysis.  Consider an n-th order single-input
single-output system of the general form

    

x k Ax k Bu k d k

y k Cx k

( ) ( ) ( ) ( )

( ) ( )

+ = + +
=

1
             (1)

where A, B, C describe the known system dynamics.
Extension to the multiple-input multiple-output case
is straightforward.  The index k denotes the time
  t k t= ∆  where   ∆t  is an appropriate sampling interval.
The quantities     x k( ),     y k( ) ,     d k( ) ,     u k( ) denote the
unknown system state, known output, unknown
disturbance, and ILC input, respectively.  Typically
ILC is implemented in conjunction with an existing
feedback controller.  The role of ILC is then to
provide a correction to the command to the control
system.  In this case the matrices A, B, C represent the
closed-loop system with the embedded existing
feedback controller.
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The ILC objective is to make the system track a
desired output trajectory     y k*( ) ,     k p= 1 2 3, , , ...,  by
repeated trials of the control input time history     u k( )
for     k p= −0 1 2 1, , , ..., .  After each trial, the system
returns to the same initial condition before the next
trial commences. It is assumed that the unknown
disturbance     d k( )  is the same from one repetition (or
trial) to the next.  Using the subscript j to denote a
trial or repetition number, the relationship between an
input time history and the resultant output time
history at any repetition j can be written as
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j j= +                              (2)
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The disturbance vector   w  incorporates the effect of
the initial state     x( )0 , and the repeating disturbance

    d k( )  in the time domain. To eliminate the effect of

  w , define a backward difference operator 
  δ j  in the

repetition domain variable j, applied to any variable   v
to be     δ j j jv v v= − −1.  Applying this operator to (2)
yields

  δ δj jy P u=                             (4)

With the tracking error defined as 
    
e y yj j

= −* , it

follows that   δ δj jy e= − .  Hence, the tracking error

version of (4) is

  δ δj je P u= −                             (5)

Notice that the effects of any repeating initial
condition and repeating disturbance are automatically
eliminated by the backward difference operator.
Consequently, a stable ILC law designed from (4) or
(5) will automatically compensate for the unknown
initial condition and disturbance.

In writing (2)-(5) we implicitly assume that     CB ≠ 0,
i.e., the system time delay is one as is the case when
discretizing a continuous-time system with a zero-
order hold on the input.  If additional time delays are
present, say     CB = 0 but     CAB ≠ 0 then one adjusts the
definitions in (3) so that P  again has non-zero
elements on the main diagonal (CAB).  When there is

a direct transmission term D  in the time domain
model, one can specify the p-time step long desired
trajectory at time steps     k p= −0 1 2 1, , , ...,  to be
achieved by adjusting the inputs at these same time
steps.  In this case the definition for 

  
y

j
 can start from

time step 0 instead of 1 and the P matrix starts with D
rather than CB.  With this adjustment, the equations
again have the form of (2) and (4) or (5) with an
invertible P.

3.  ILC BASED ON HIGHER-ORDER MODEL

In standard feedback control theory, one possible
reason for needing high-order control is the high
order of the system model.  We examine if this need
arises in the case of ILC where higher orders mean
orders higher than one.  Notice that (2) is a static
model.  The dimension of P depends on the number
of time steps in the trajectory, not on the order (the
number of states) of the time-domain model (1). To
eliminate the unknown repeating disturbance term, it
is sufficient to use the difference operator   δ j  to
produce (4). Equations (4) can be viewed as a “state-
space” model in the repetition domain,

    

z I z P u

y I z

j j j

j j

+ += +

=
1 1δ

                     (6)

where the “system” matrix is I, the learning input
influence matrix is P, the output influence matrix is I,
and the learning control variable is     δ j u+1 . The fact
that the repetition-domain system matrix is an identity
matrix carries several implications. The system (6) is
controllable if and only if P is square and full rank.
Since the output matrix is I, (6) is automatically
observable because the “state” is directly measured.
For a standard state-space model of modern control, if
there are fewer output measurements than the number
of states, but the system is observable, then it is
possible to convert a first-order state-space model
into an equivalent higher-order input-output model.
In the case of ILC, however, because the “state” is
directly measured, the repetition-domain model is
naturally in first-order form.  Of course it is possible
to create a repetition-domain model with order higher
than one, but such a higher-order model is artificial in
the sense that it merely contains cancelling pole and
zero pairs corresponding to extra repetition-domain
“observable” but “uncontrollable” dynamics.  We
therefore conclude that the need for higher-order ILC
is not dictated by the need for a higher-order
repetition-domain representation.

4.  HIGHER-ORDER ILC AND
SPEED OF LEARNING

Next we address the possibility of needing a higher-
order ILC to improve the speed of learning.  Again
the fact that the repetition-domain system matrix is
identity plays a role in the following consideration.



Let us consider the case of a state-space model A,B,C,
of standard modern control theory,

      

y k y CBu k CABu k

CA Bu k CA Buk
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       (7)

The output at any time step k is a convolution sum of
the pulse response time history (given by the time-
domain Markov parameters   CA Bk ), and the control
input time history.  Translating this result to the
repetition-domain model for ILC, we have
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As long as  A I≠  it is clear from (7) that bringing the
output to a desired value in one time step or a number
of time steps can involve very different control effort.
There can be a preference based on actuator
saturation constraints.  However, in ILC the
repetition-domain system matrix is an identity matrix,
hence in (8) all the repetition-domain Markov
parameters are the same, equal to P .  When the
desired trajectory is feasible, then there is no issue of
saturation (by definition), and the only requirement
for achieving zero tracking error is that the sum of all
corrections     δ δ δj ju u u, , ..,−1 1  over all repetitions
equals the change 

    
u uj − 0  that could have been made

in the first repetition to achieve zero error.  The
corrections can be done all at once or divided in any
desired way over a number of repetitions, with the
only requirement that the sum be the needed value.
Thus, ILC can in theory achieve zero tracking error in
one repetition using the first-order inverse ILC law

    
δ j j j ju u u P e= − =−

−
−1

1
1                  (9)

Thus as far as speed of learning is concerned, a first-
order inverse ILC controller gives the fastest learning
possible. Often such an inverse controller is not
desirable because it requires exact knowledge of P,
and its sensitivity to noise in the system.
Nevertheless we can still conclude that the benefit of
using a higher-order ILC law is not in improved
learning speed, but in other factors such as robustness
to noise and modelling uncertainties.  For example, in
the next section we show a case where slowing down
the learning rate is used by a first-order ILC law to
avoid possible numerical ill-conditioning in the
computation of     P

−1.

5.  ILC BASED ON QUADRATIC
COST MINIMIZATION

In this section we investigate whether the use of
various “typical” cost functions of optimal control

applied to ILC problems can result in higher-order
ILC laws.

Quadratic Cost 1:  The simplest repetition-domain
cost function that one may use has the form

  
J e Q e u R uj j

T

j j
T

j= [ ] + [ ]δ δ                (10)

This cost function removes the numerical ill-
conditioning of     P

−1 that would be required in an
inverse ILC law such as (9).  The learning speed is
governed by varying the parameter R that penalizes
large correction from one repetition to the next.   Note
that the effect of R  goes away as the system
converges to the desired inverse solution as     δ j u → 0 .
Minimizing this cost function results in a first-order
ILC law

    
δ j

T T
ju P QP R P Q e= +( )−

−

1

1             (11)

Quadratic Cost 2:  Next we consider a quadratic cost
analogous to that used in standard optimal control
theory, say for example, the infinite horizon case
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By direct analogy such an optimal ILC law is first-
order with an optimal learning gain     L *,

    
δ j ju L e= −* 1                         (13)

where

    
L R P SP P ST T* = +( )−1

                  (14)
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0              (15)

Quadratic Cost 3:  Let us examine a cost function
that involves future changes in the learning control
correction as motivated by the concept of predictive
control.  The simplest form of receding-horizon
predictive control is as follows.  At each time step a
sequence of control inputs that would bring the
system state at some future time step to zero is
computed, but only the first of that control sequence
is used. The entire calculation is repeated at the next
time step to generate the next control to use.  The
equivalent ILC version is to minimize

    
J e ej j q

T
j q= + − + −1 1                       (16)

where the q-repetition ahead future tracking error is a
function of the current tracking error and future
learning control correction
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 Minimizing (16) yields
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where the plus (+) sign denotes the pseudo-inverse
operation.  From (18) the q-repetition ahead
predictive ILC law is given by

    
δ j ju

q
P e=





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−
−

1 1
1                       (19)

Thus the effect of using predictive control for ILC
looking q repetitions into the future is the same as
using the first-order inverse control law (9), but
making 1/q of the total correction needed each
repetition.  This is another important consequence of
having the repetition-domain system matrix be an
identity matrix.

Quadratic Cost 4:  So far we have considered
quadratic costs that involve the changes in the control
instead of the control input directly.  Our conclusions
remain the same if the actual control input is involved
instead.  For example, minimizing

  
J e Q e u R uj j

T

j j

T

j= [ ] + [ ]                   (20)

results in the following ILC law

    
δ j

T T
j ju P QP R P Qe Ru= +( ) −[ ]−

− −

1

1 1          (21)

Thus, in addition to the tracking error, the control
input of the previous repetition is also involved in the
ILC update.  The resultant ILC law, however, still
remains first-order.  This case and the case of using
ILC to arrive at the same optimal solution without
initial knowledge of the plant were presented in Frueh
and Phan (2000).

6. ILC BASED ON INDIRECT AND
DIRECT ADAPTIVE CONTROL

One scenario where data from past repetitions affect
the computation of the current ILC correction occurs
when system identification is involved.  In the ILC
counterpart of indirect adaptive control, the Markov
parameters that make up P of repetition-domain
model (5) are identified, Phan and Longman (1989),
Moore (1999).  This approach results in a first-order
ILC law with a repetition-varying learning gain.  The
update formula for the first-order learning gain
involves data from two previous repetitions or trials.
For simplicity, we illustrate the ILC counterpart of
indirect adaptive control with the projection algorithm

although more sophisticated identification algorithms
can be used.  The ILC law is

      
δ j j ju P e= −

−
−

)
1
1

1                          (22)

where
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and     c > 0,     0 2< <a .  Notice that the update formula
to estimate     Pj−1 involves the difference in the control
and tracking error from two previous repetitions.  For
the ILC counterpart of direct adaptive control, the
inverse of P  can be directly identified by simply
interchanging     δ j u−1  and     δ j e−1  in (23). The identified
inverse can then be used as the ILC gain in (22).

7.  GENERAL FORM OF LINEAR
HIGHER-ORDER ILC

A linear n-th order ILC has the general form,
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Using (5), the dynamics of the ILC process in the
repetition domain is given by
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In the limit as   j → ∞ , we desire 
    
e j → 0 as     δ j u → 0

(i.e.,
  
u j converges to the necessary control input) by

proper choice of the learning control gains in (24).
Equation (24) represents a set of coupled and high
dimensional difference equations.  Each learning gain
matrix has dimensions   p p× , where p is the number
of time steps in the input and output trajectories.
Designing the learning control gains is therefore not
trivial.  In the following we use the singular value
decomposition (SVD) to reduce (25) to a set of
uncoupled scalar equations so that the desired
repetition-domain poles and zeros can be placed.

8. UNCOUPLING THE REPETITION
MODEL BY THE SVD

In the following we work with (5) which describes
how a change in the learning control input affects the
tracking error in the subsequent repetition.  The SVD
of P is   P USV T= , which allows us to re-write (5) as

  δ δj
T

je USV u= −                      (26)

Pre-multiplying both sides of (26) by the transpose of
U yields

  U e SV uT
j

T
jδ δ= −                     (27)
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so that (5) can be simplified further as

  
δ α δ βj jS= −                            (29)

where S is a diagonal matrix of the singular values

    σ ( )k > 0, which can be arranged in descending order
if desired,
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The elements of α  (and β ) are the coefficients of
the tracking error (and control input) time history on
the orthonormal left (and right) singular vectors of P.
Equations (28) give the one-to-one mappings between
α  and   e, between β  and   u  at any repetition j.
Because S is diagonal, the elements of α  and β  are
uncoupled from each other,

    
α α σ δ βj j jk k k k k p( ) ( ) ( ) ( )  , , ...,= − =−1 1 2    (31)

9.  HIGHER-ORDER ILC BY POLE PLACEMENT

We now illustrate how (31) can be used to design
various iterative learning controllers.  For example,
let us consider a second-order ILC law

    β β δ βj j jk k k( ) ( ) ( )= +−1 ,        k p= 1 2, , ...,      (32)

where
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The above ILC law is second-order because the
current learning control correction is based on data
from two previous repetitions.  In general the scalar
gains     g ki( )  are allowed to vary with k.  Recall that
the equations in (28) are used to transform back and
forth between the tracking error and the control input
time histories and their corresponding coefficients at
any repetition j during the implementation of such an
ILC law.

The stability of the learning process is governed by
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Equation (34) can be re-written as
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For pole placement ILC design, the scalar learning
gains     g ki( )  and     h ki( )  can be found that place
repetition domain poles of (35) at any desired
locations.  Note that this non-standard case of pole
placement is not the common type of pole placement
where the existing system open-loop poles are moved
to new closed-loop locations.  Instead, new poles (and
zeros) are created and placed.  Perhaps the closest
analogy to standard feedback controller design occurs
when the additional poles and zeros are introduced to
cancel multiple harmonic disturbances.

10.  HIGHER-ORDER ILC BY NOISE FILTERING

Consider the system (1) with process noise     ε1( )k  and
measurement noise     ε 2( )k present,

    

x k Ax k Bu k d k k

y k Cx k k
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The repetition-domain representation is

    
e e P uj j j= − +−1 δ ε                     (37)

where ε  incorporates the effect of process and
measurement noise as seen by 

  
e j . The associated

Kalman filter for (37) is
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Let the learning process be governed by an ILC law

    
δ j ju Le= −1                              (39)

with some suitably designed learning gain L such as
that given in (11).  First we examine the most obvious
case where the tracking error provided by the above
Kalman filter is used in place of the measured
tracking error 

    
e j−1,
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Although this strategy is valid, closer examination of
(40) reveals that the measured error 

    
e j−1, although

available, is not used in the computation of  δ j u.  This
situation is different from the standard case of using
an observer or Kalman filter in an observer-based
state feedback control system.  There the computation
of     u k( ), which occurs between time step     k − 1 and k,
uses     y k( )− 1  which is the most recently measured
output.  In the ILC case, what we should use instead



is a true filter for 
    
e j−1 denoted by     e j* −1.  From linear

filtering theory, the optimal    e j* −1 can be back
computed from the Kalman filtered 
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Thus an ILC law that uses the error estimate that is in
fact optimal because it uses all available data is

    δ j ju Le= −* 1                             (42)

where     e j* −1 is given by (41) and the Kalman filtered

error 
      
)
e j−1 in (41) is given by (40).

Next we proceed to determine the order of the above
learning control scheme. Adding and subtracting
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 −1δ  from (38) yields
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1

δ
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 (( )δ j u

     (43)

Substituting (43) into (42) produces

      

δ

δ

j j j j j

j j j j

u L I K e LK e

L I K P L u LK e

= −( ) +

= − −( ) −( ) +

− − − −

−
−

− − −

1 1 1 1

1
1

1 1 1

)

 
   (44)

Thus, the above ILC law is second-order in   δ j u but
first-order in 

  
e j  as defined in (24).

11.  CONCLUSION

Although the idea of higher-order iterative learning
control seems natural, the current understanding of
the topic is quite incomplete.  Clearly it is possible
that a well-designed higher-order ILC law will
outperform a poorly designed first-order one.  But the
opposite is also possible. We believe that it is difficult
to justify the merit of either design strategy through
anecdotal evidence, and prefer to search for various
ways in which higher-order ILC might naturally arise.

This paper performs an extensive search for possible
sources for higher-order ILC. Using the repetition-
domain formulation of ILC that puts the learning
control problem in modern control format, a rather
comprehensive set of standard controller design
techniques were applied. Possible sources for higher-
order ILC examined in this paper are higher-order
model structure, improved learning speed,

minimization of various typical quadratic cost
functions, and design approaches based on predictive
control, pole placement, direct and indirect adaptive
control, and noise filtering.  This paper showed that
among these possibilities, only a non-standard case of
pole placement where the order of the controller is
higher than the order of the system, and a case of
noise filtering naturally resulted in iterative learning
controllers with orders higher than one.  All others
resulted in first-order ILC laws.  The results of this
paper help explain the prevalence of first-order ILC
laws in the literature. They also reveal that the real
need for higher-order ILC designs may not be as
obvious as previously anticipated. However,
incorporating a noise filter in the learning control
scheme did produce an ILC law of second-order in
the control correction but first-order in the tracking
error.  In this particular case the need for a higher-
order ILC law over a first-order one was
demonstrated.  What we have not addressed in this
paper is the issue of robustness to modelling error and
their associated design approaches.  Whether such a
consideration would naturally lead to a higher-order
ILC design remains a topic for future consideration.
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