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Abstract: Scheduling trains on a single railway line is treated by converting the scheduling 
problem to a discrete event dynamic system, and converting  a greedy time-efficient strategy to 
an energy efficient schedule. While such a schedule cannot be referred to as a strategy 
dependent solely on the state of the system the strategy is easily re-computed when 
perturbations in the nominal schedule occur.  Copyright © 2002 IFAC. 
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1. INTRODUCTION 
  

The need for more efficient use of existing resources 
in freight rail transportation is heightened by the  fact 
that, in the US, rail freight transportation is based on 
diesel traction. Operating costs  are thus becoming  
more sensitive to  the increasing costs of fossil fuel, a 
cost that will increase in the near future. Time- and 
energy-efficient scheduling, and fast rescheduling, of 
trains  can significantly contribute to the cost- 
effective operation of  freight traffic. The problem 
considered here involves energy-efficient scheduling 
of trains on a line with single-track sections, as is the 
case on many freight routes in the US. The approach 
departs from all earlier approaches to the problem by 
employing a discrete event model of the traffic on the 
line and a heuristic, locally optimal, travel advance 
strategy  to develop energy efficient schedules.  
 
Discrete event models of train traffic along railway 
lines have been used  to obtain a greedy, state- 
dependent, travel advance strategy (greedy TAS) that  
determines which train is to advance and which is to 
be stopped at a siding, or a station, referred to as meet 
and pass points  (Medanic and Dorfman, 2001).  The 
greedy TAS is a strategy, in the sense that train 
advances are a function of the location and the 
velocities of all trains in vicinity of each other. Thus, 
the greedy TAS can  be applied whatever the location 
of the trains, be it on an existing schedule, or a 
perturbed schedule,  in contrast to schedules obtained 
using nonlinear programming approaches that have 
been used in the past. The greedy TAS is a time-
efficient strategy, consistently achieving an 

efficiency ratio (ratio of unobstructed time to clear 
the line of all trains to obstructed time to clear the 
line of all trains using the schedule obtained by 
applying the greedy TAS) above 0.95 for train 
densities of the order of 2 trains/h from each 
direction, a density that suffices for most railway 
lines. The greedy TAS is  combined here with  
optimal pacing velocities for individual trains to 
obtain an energy efficient schedule.  
 
Energy efficient operation of trains has been the 
subject of intense study up to the present time 
(Hewlett and Pudney, 1995; Khmelnitsky, 2000; 
Franke, 2000). However, all these endeavors involve 
the energy-efficient operation of a single train, and 
ignore the effect of  bi-directional traffic along the 
railway line. The optimal pacing velocities obtained 
by optimizing a single train can provide a significant 
support tool to train operations, but ignore the effect 
of the two-way traffic on energy efficient scheduling. 
On the other hand the approaches that focused on the 
scheduling issue  have   treated energy costs using 
constant pacing velocities, and have by and large 
ignored the various factors influencing the optimal 
velocity profile that results in minimal energy costs. 
The greedy TAS developed for time-efficient 
scheduling of traffic on a line is used here to develop 
an energy-efficient  schedule using the greedy TAS 
and the optimal pacing velocities of individual trains.  
The energy-efficient schedule is thus obtained by  
decomposing the problem into a train optimization 
phase and train scheduling phase, and results in a      
schedule that is both time-efficient for a given level 
of energy costs, and energy-efficient for the given 
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times of travel. Further simultaneous reduction of 
time of travel and energy costs is not possible 
because a trade-off between time-  and energy-
efficiency is unavoidable.  
 
 
2. A GREEDY TRAVEL ADVANCE STRATEGY 
 
The energy-efficient scheduling problem is to 
schedule N = N1 + N2 trains, N1 trains traveling from 
O to D, N2 rains traveling from D to O to minimize 
total energy cost while ensuring that all trains clear 
the line within a given time interval.  
 
The time-efficient scheduling problem is a closely 
related problem that does not explicitly consider 
energy costs, but instead chooses  the best train 
velocities and departure and arrival times to minimize 
a suitable time of travel related performance index.  
A greedy time efficient strategy is exploited here to 
develop an energy-efficient schedule, and is 
described first.  The formulation used in developing 
the greedy TAS differs from those used in the 
programming approaches (see Cordeau et al, 1998 
Higgins et a, 1995 and Kraft 1987) in that the 
departure times and train velocities in sections are 
assumed fixed (as opposed to belonging to pre-
defined admissible ranges).  The stop times at meet 
and pass (M&P) points,  arrival times at destinations, 
and the complete schedule  are obtained by applying 
the TAS and solving the discrete event dynamics. In 
addition,   the following assumptions are made: (i) 
The route is fixed and defined by the vector xd; (ii) 
Velocities of all trains in all sections of the route are 
fixed, and given by the matrices  VL and VR, 
respectively, (i.e. the element VL(i,m) is the velocity 
of train i traveling from O to D in section m, the 
element VR(j,n) is the velocity of train j traveling 
from D to O in section n); (iii) The departure times    
of the trains are given by  the vectors TOL and TOR, 
and the arrival times are free, and depend on the train 
advance strategy; (iv) The minimal headways of 
trains are defined by the vectors dL and dR (i.e. dL(i) 
defines the minimal distance between train i and any 
train ahead of it).  
 
Assuming constant velocities in each section of the 
line, the model  of “system dynamics” may be written 
in the form  
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where x(k) is the vector of  position of trains 
traveling from O to D, and y(k) is the vector of 
position of  trains traveling from D to O, and ∆tk is 
the time to the next discrete event when the nature of 
the dynamics changes.   The time periods ∆tk  in the 
discretization vary  in duration and depend on the 
state of the system and train velocities, with the 
constant velocity of any particular train depending on 

the section of the line the train  is currently 
traversing.  The next discrete event occurs the first 
moment a train reaches an M&P point.  The trains 
reach M&P points asynchronously, and this leads to a 
discrete event system (DES).  
 
The   greedy TAS    is a  locally optimal strategy that 
defines which train advances and which stops at an 
M&P point in 11 different situations in which a meet 
and pass (M&P) event, a met and overtake (M&O) 
event, or a combined M&P/M&O event occurs. In 
the greedy TAS The advance of train i,  moving in 
the O to D direction, depends on the position and 
velocity of only the trains in its vicinity, typically 
trains i+1, and i-1, moving in the same direction and 
any  train j moving in the opposite direction and 
immediately ahead of  train i,  (and vice-versa for a 
train j moving in the D to O direction). The main 
components of  the greedy TAS  are: 
 
(a) Determination of the next discrete event (the 

train which will first reach an M&P point, and 
the required time interval dtnext). 

(b)  Resolution of the   M&P and/or M&O events at 
this M&P point, and possibly  at other M&P 
points where a train is stationed at,  at the current  
discrete event , and 

(c) Application of the appropriate rules for a simple 
M&P, simple M&O, or a combined M&P with 
M&O event, as the case may be. 

 
Given  a state x(k), y(k) at some discrete event (DE)  
k, the time to next M&P for each train is computed, 
from 
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and adjusted  by eliminating the associated 
components of z(i,k) or w(i,k) if a slower train is 
obstructing a faster train in reaching first an M&P 
point. Two vector variables, SL and PL,  are 
associated with trains moving from O to D, and two 
vector variables,  SR and PR, are associated with 
trains moving from D to O.  Variables SL, SR are used 
to characterize the velocities of trains while in a 
section, variable PL, PR are used for a train  at an 
M&P point, and are defined by  
 
      SL(i,k) = m   if x(i,k) ∈ (xd(m),xd(m+1)),  
      PL(i,k) = m   if x(i,k) ∈ [xd(m),xd(m+1)),   
      SR(j,k) = n    if y(j,k) ∈ (xd(n),xd(n+1)),    
      PR(j,k) = n    if y(j,k) ∈ (xd(n),xd(n+1)]. 
      VL(i,k) = velocity of train i  in section k 
      VR(j,k)= velocity of train j in section k 
 
Thus, PL(i) = n implies xd(PL(i)) = xd(n) and identifies 
the train i as being at M&P point n, while SR(j,k) 



  

)

identifies the train moving from O to D as being in 
the k-th section, etc.  
 
Given an arbitrary vector Γ  let the two arguments 
α,β in the operation [α,β] = min(Γ) denote the 
minimal component and the lexicographical order of 
that component in Γ. Then, given the vectors z and w,  
let    
 [zmin,imin] = min(z)           (3) 
 [wmin,jmin] = min(w) 
characterize the train (imin, or jmin)  to reach first the 
next M&P point  and the minimal time   required 
(zmin or wmin),  at the current discrete event. When 
trains are not in the vicinity of each other all trains 
will advance along the line for the duration of the 
time interval 
           (4) w,zmin(dtnext minmin=
at which time the next DE occurs (because train imin, 
or jmin, as the case may be, reaches an M&P point,  
referred to as the focal M&P for that DE). 
 
Concerning the TAS, a rule is defined for each type 
of M&P event, M&O event and combined 
M&P/M&O event involving at most   three trains.  
Four trains cannot pass each other if they are in 
vicinity of each other at any one DE, and this option 
is excluded  by the defined rules   at prior discrete 
events. Application of the TAS requires that each 
train obtain information on the train in front of it 
traveling in the same direction, as well as closest 
train(s) approaching it from the opposite direction.  
 
 
4.   TIME-EFFICIENT PERFORMANCE OF THE 

GREEDY TAS  
 
Performance measures used in analysis of the greedy 
TAS include: (i) the time to clear the line (J1), (ii) the 
total delay of all trains (J2), and (iii) the maximum 
delay (J3). The time to clear the line criterion is  
defined as 
             (5) d1aN1 ttJ −=
where t1d is the time of departure of the earliest train 
on the schedule, and tNa is the time of arrival of the 
latest train on the schedule. The criterion is well 
tuned to the formulation of the problem in which 
times of  departure are fixed, because its minimum 
possible value, ,   is the total time to clear the line 
when all trains travel unobstructed. (In the absence of 
overtakes this would correspond to the availability of 
double tracks over the entire line.) Given departure 
times and velocities    the  efficiency ratio is defined 
by 
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where t1d
  is the time of departure of the first train to 

depart, and subscripts ob and f stand for “obstructed” 

and  unobstructed (i.e., “free”) travel, and so   
is the time of arrival of the last  train to arrive.  

f
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Analysis of time-efficient performance of the greedy 
TAS  shows that    with number of trains traversing a 
single line in a day, from each direction, of the order 
of  2 per hour the greedy strategy easily determines a 
schedule without encountering a deadlock. 
Scheduling  N1 = N2 = 30 trains  in each direction 
involve on the order of 850 discrete events. 
Furthermore,  as the number of trains in increased 
(from N1 = N2 = 6  to 30 in each direction), the 
efficiency ratio remains remarkably constant. While 
attempting to pack a larger number of trains from 
each direction will certainly lead to a deadlock, there 
simply is no line where a much greater number of 
trains from each direction needs to be scheduled in 
the US today. That is why local strategies work well, 
and are used here to develop energy-efficient 
schedules. 
 
 

5.    ENERGY- CONSERVING TAS 
 
Consider the case when:  (i) trains  use maximum 
velocities allowed in sections of the line, which then  
depend on the condition of the tracks and possibly on 
the type of train involved, and (ii) energy costs are a 
convex function of train velocity. Maximum velocity 
travel is often how freight trains are run in the 
absence of efficient  train schedules, the result being 
long stops at M&P points. Suppose the greedy TAS 
has been determined, and has produced departure 
times, and stop times at M&P points for all trains 
involved in the schedule, and suppose that as a result 
the schedule is characterized by   the efficiency index 
η.  The greedy schedule can be converted to an  
efficient pacing schedule (EPS) that will maintain 
the value of  η, reduce total delay and maximal delay, 
and also reduce energy costs.    However, there is no 
longer a strategy that can be applied when 
perturbations in the schedule occur, because 
modifications in the schedule depend on the stop 
times associated with the nominal schedule. On the 
other hand, the efficient computation time associated 
with re-computing a new  greedy schedule  allows a 
fast recalculation of an EPS in the perturbed case. 
 
Once the greedy schedule is available, the EPS is 
obtained by introducing the following simple 
modifications into the greedy schedule. It is stressed 
that such modifications are by no means simple when 
the nonlinear programming approach is applied; 
there, the modified velocities  must be found together 
with all other elements of the nonlinear programming 
solution. Let the scheduled departure times of trains 
by denoted by  Tdxi, i = 1,..,N1, and Tdyj, j = 1,…,N2, 
and let the departure times obtained by the greedy 
schedule be denoted by Txi(1), i = 1,..,N1 and 



  
Tyj(K+1), j = 1,…,N2. Then, the EPS is obtained by 
introducing the following modifications into the 
schedule, and train velocities: 
 
(a) the departure times are shifted from Tdxi, i = 1,.,N1,    
     Tdyj, j = 1,…,N2, to Txi(0), i = 1,..,N1 and Tyj(0), j =  
     1,…,N2, and 
(b) the velocities of the trains traveling from O to D  
     are reduced to the  velocities to VLP(i,1), i=1,..,,N1  
     where 
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     and Txi(2) is the time train i traveling from O to  
     D arrives is scheduled to depart from M& P   
     point 2, and ∆xi(2) ≥ 0 is the stop time at the   
     M&P  
     point if there is a scheduled station stop there.   
(c) the velocities of the trains traveling from D to O   
    are reduced to the pacing velocities VRP(j,K), j =     
    1,…,N2 where 
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    and Tyj(K) is the time of departure of the train j  
    traveling from D to O at M&P point K, and  
    ∆yj(K) ≥ 0 is the stop time of train j at the M&P  
    K point if there is a scheduled station stop there. 
 
This strategy  eliminates superfluous delays that are 
due to the initial distribution of departure times, and  
eliminates the stopping times along the route by 
reducing velocities from maximal to optimal pacing 
velocities. This reduces energy costs but does not 
affect the total time to clear the line, while reducing 
the total delay and the maximum delay. 
 
Example 1. We illustrate the effect of energy 
conservation   using  the case where  N1 = N2 = 6 
which forms one piece of a broader capacity study 
described in (Medanic and Dorfman, 2001). A line 
with 11 single track sections   with total length  of 
210 [mi] is considered , with different maximum 
velocities, varying between 50-90 [mi/hr] in each 
section, but the same for all trains, and minimal 
headways   set at 0.5 [mi] for all trains. The same 
number of trains was assumed to depart from each 
end of the line, with departure times of trains  
approximately uniformly distributed over a 24 h 
period. The schedule obtained using the greedy TAS 
is characterized by η = 0.9883 (already extremely 
high) with a total delay of 3.46 [h]. The actual 
schedule is omitted due to space restrictions.  
 
By modifying times of departure and reducing the 
velocities of four trains in four sections (VL(4,9)=45, 
reduced from 60, VR(3,3)=50, from 70, VR(5,11)=25, 
from 50 and VR(6,11) = 40, from 50), a modified 
schedule is obtained and  shown in Figure 1 in the 
form of  the standard scheduling diagram used in 
railway industry, with time displayed on the 

horizontal axis, and the  distance (from D) on the 
vertical axis.  Horizontal lines represent the locations 
of the M&P points at which passes and overtakes can 
take place. 
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Figure 1. Schedule for Example 1 
 

The modified schedule is characterized by η = 0.9980   
with total delay down to 0.4942 (from 3.8321) and 
maximum delay down to 0.1057 (from  0.5869), and 
with lower energy costs due to  lower velocities of 
some trains in some sections. The final departure 
times are TOL =[0, 4.29, 8.59, 11.77, 14.95, 18.99] 
and  TOR = [1.12, 5.42, 9.60, 13.70, 17.45, 20.60]. 
While some of the time-saving may not be relevant 
and may not be enacted  (this   example is only used 
to illustrative the point), replacing these perturbation  
in departure times with lower velocities  adds to 
energy savings.  
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Figure 2. Schedule wih reduced velocities 

 
Further conservation of energy can be accomplished 
but at the  at the expense of time of travel. As an 
illustration of this concept, if it is considered that 
energy costs associated with the velocities proposed 
for this schedule are too high, one can reduce the  
velocities to reduce the cost, and determine the effect 
on both the energy savings and time of travel. 
Reducing all velocities by a factor of 0.75  results in 
the velocities {37.5, 45, 52.5, 60, 67.5, 67.5, 60, 52.5, 
45, 37.5, 37.5} per section (for all trains). Applying 
the greedy strategy without any additional 
modifications results in a schedule where all the 



  
trains clear the line in J1 = 25.377 h (only 1.33 h 
more than with the original velocities) and with η = 
0.9944, with a total delay J2 = 3.5627 h and 
maximum delay of J3 = 0.73175 h. Figure  2  displays 
the obtained schedule. These delays can again be 
reduced by applying a energy conserving 
modification, in this case reducing some velocities 
further, notably VR(1,9),VR(1,3), VR(4,3), VR(5,9) 
and VR(5,3).  
 

6. ENERGY- EFFICIENT TAS 
 
Consider now the case when the goal in scheduling is 
to meet target travel times for all trains while 
minimizing the total energy costs.  The energy costs 
in this case are expected to be lower than with any 
energy conserving strategy because by assumption 
lower train velocities will be used throughout, and the 
schedule is obtained at the expense of increased 
travel times.  The solution will depend significantly 
on a number of factors including targeted travel 
times, train composition, track condition, train 
velocity and curve and grade variations and section 
lengths. The problem is particularly meaningful over 
railway lines with significant grade variations where 
negotiation of grade variations can be a significant 
factor affecting energy consumption, and where the 
locations of M&P points may also significantly 
influences the optimal  pacing velocities. In that case 
the greedy TAS is an efficient way of tying together 
the optimal pacing velocities of all the trains, 
obtained separately for each train by optimizing its 
travel over all sections of the line, into a complete 
schedule. We describe here how the two components 
are interconnected, and illustrate the procedure by an 
example.   
 
Suppose desired travel times Tdi, i=1,…N are 
prescribed for trains in the schedule, and suppose 
optimal pacing velocities  Vi(t), t ∈ [0,Tdi], have been 
obtained, respectively,  for all the trains using, say, 
the approach in (Franke et al, 2000, Howlett and 
Pudney, 1995, Khmelnitsky, 2000). Integrating the 
velocities one can determine the time intervals each 
train needs to travel over the various sections of the 
line. From this   one can determine the average 
velocities of trains in section of the line that 
correspond to the optimal pacing of trains along the 
sections. Let these be denoted by VL(i,m), i=,…,N1, 
and VR(j,m), j = 1,…,N2, and m = 1,…,K. The 
departure times of trains in this formulation are free, 
but in practice will be constrained by many diverse 
factors; however,  energy costs should be invariant 
with respect to departure times.   The schedule covers 
a standard scheduling period such as a day, and  the 
goal of scheduling is to efficiently clear the line for 
additional possible traffic. Thus,  the scheduling 
period is assumed to   

 ∑≤
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It may be possible to pack the trains into a shorter 
scheduling interval, when there is a valid reason to do 
so. In that case one can still start with the above Ts, 
and then gradually shorten Ts and observe the effect 
on the schedule. Given Ts and the average velocities 
the greedy TAS is applied to the scheduling problem 
and  a schedule is obtained where each train employs 
the average pacing velocities per sections of the line, 
and the TAS assigns stop times to certain trains to 
enable all trains to meet and pass, and possibly meet 
and overtake, and reach their destinations. Since the 
stop times do not increase energy consumption this 
schedule results in minimal energy consumption. The 
time-efficiency of the schedule can be determined by 
the ratio η, and by the total and maximum delay. If a 
train in not stopped at a certain M&P point the 
optimal pacing velocity is adjusted, or re-computed 
over the two sections.   
 
Example 2. Assume in the scenario used in 
Examples 1 that the railway line has a grade profile 
as shown in Figure 3 implying that trains traveling 
from O to D will require more energy   to traverse 
sections 2,3,5,7 and 8  with an uphill grade than 
trains traveling from D to O. Similarly, trains 
traveling from D to O will require more energy   to 
traverse sections 6, 10 and 11 that trains traveling 
from O to D. Consequently, trains encountering 
uphill sections will use lower velocities to optimize 
energy costs. In addition, differentiating between 
long and heavier trains(L), average length and weight 
trains (A)  and short and relatively light trains (S),   
the long trains will use the lowers velocities on the 
inclined   sections  (and on downhill section will 
obey speed restrictions due to  track conditions 
irrespective of the type of train. 

 
 Figure 3. Illustrative grade profile 
 
With this in mind, and trains types traveling from O to 
D are {S,A,L,L,A,S},and have departure times at  
{0,4,8,12,16,20} hours,  train types traveling from D 
to O are  {S,A,L,L,A,S}, and have  departure times at 
{1,5,9,13,17,21} hours, all train headways are 2 mi, 
and the M&P points are at mileposts {0,20,35, 
55,70,90,120,140,155,175,200,210}, and suppose the 
optimal pacing velocities translate into the average 
velocities in the section of the line as shown in Table 
1. The greedy TAS then provides the schedule shown 
in Figure 4, characterized by η = 0.9897, J1 = 24.3431, 
J2 = 4.0984, and J3 = 0.8476. 
  
 
 



  
        Table 1. Train velocities 
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   Figure 4.  Energy optimal time-efficient Schedule 
 
The time-efficient schedule of the individual energy 
efficient  optimal pacing routes   is not a consequence 
of the relatively large intervals between departures.  
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       Figure 5. Tighter energy optimal  schedule 
  
 When the departure times are spaced tighter, to 
cover a 14 [h] period, with departure times at 
{0,2,4,6,8,10} and {1,3,5,7,9,11} hours, the Greedy 

TAS produces the schedule shown in Figure 5 
which has the same energy costs and remains time-
efficient,  with η = 0.9929, J1 = 13.9927, J2 =  4.5625, 
and J3 =  0.7700. 
                     

 
7. CONCLUSIONS 

 
Local, greedy TAS combined with optimization of 
individual train along section s of the line offer the 
possibility of obtaining suboptimal energy-efficient 
train schedules over a line with single track sections.   
The TAS is easily adapted to the case where double 
track exist in certain sections by removing 
restrictions for M&P, and M&O within such sections.  
The local nature of the strategy raises expectations 
that it can be extended to railway networks, and this 
will be pursued. 
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