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Abstract: The robust stability problem for uncertain,  linear, state-space models is considered. 
When a fixed Lyapunov function is used to provide an admissible perturbation set, the 
obtained variation bounds can be too conservative. The main purpose of this investigation is to 
define the conditions, under which it is always possible to construct a parameter-dependent 
Lyapunov function for a class of uncertain systems.The contribution to robustness study is due 
to a new sufficient condition for robust stability. The advantages of this approach are 
illustrated by examples and comparison with results, obtained by known procedures is made. 
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1. INTRODUCTION 
 

The usefulness of any system analysis or design 
approach is crucially dependent on the accuracy of 
it’s mathematical model. Speaking practically, any 
real system is subjected to parameter variations, 
leading to identification errors, often called model 
uncertainties. It is obvious, that discrepancies 
between the model and the real system may result in 
degradation in the system’s functioning. Any control 
system should be designed to be insensitive, i.e. a 
robust one, against uncertainties in the plant’s model. 
By no doubt, the most important concern in this 
regard is that of robust stability. 
 
This research considers the problem of determining 
admissible variation sets for an uncertain vector 
parameter, included in the model of a linear, dynamic 
system to reflect the influence of various perturbation 
factors and modelling inaccuracies. Lyapunov’s 
stability theory is a key-tool for the purpose and a 
subjective account of some of the main results in the 
use of quadratic functions in robust analysis for 
uncertain systems is presented in (Corless, 1993). 
Many of the available results (Martin, 1990; Patel 
and Toda, 1980; Yedavalli, 1985; Zhou and 

Khargonekar, 1987, etc), provide norm bounded 
admissible perturbation sets and these are proved to 
be very conservative due to the symmetry of norms. 
Certain parameters may admit much larger 
perturbations, than presented by the norm bounds. 
Asymmetric stability bounds on the uncertain 
parameters are obtained, e.g. in (Gao and Antsaklis, 
1993; Mansour, 1998; Wang, et al., 1991), showing 
clearly their superiority to norm-based ones. 
Although better, they can still be too conservative 
and thus the problem of asymmetric admissible 
perturbation sets extension is posed. The main 
shortcoming, shared by approaches of the kind is due 
to the fact, that for the analysis of an uncertain 
system, possibly time- varying, a fixed Lyapunov’s 
function, or simply a Lyapunov’s matrix is used. 
What’s more - since it’s choice is made arbitrarily as 
a rule, the obtained admissible variation sets are yet 
rather conservative and many actually stable systems 
are treated according to them as unstable ones. 
 
The main purpose of this investigation is directed 
towards the question, whether it is possible to 
construct a Lyapunov’s matrix, which depends on the 
uncertain parameter. In the literature, one can find 
some results that analyse affinely perturbed linear 
systems with affine parameter dependent Lyapunov’s 
matrices (Amato, et al., 1997; Chockalingham, et al., 
1995; Gahinet, et al., 1996). Considerable number of 
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approaches are currently in hand (see, e.g. the 
references in (Barmish and Kang, 1993)), but each of 
them has it’s own demerit. Among them one should 
mention the results obtained in (Feron, 1995; Haddad 
and Bernstein, 1994, 1995; Mori and Kokame, 2000). 
 
The contribution of this work consists mainly in 
defining the conditions under which such a function 
always exists for the class of uncertain  systems 
considered here. This helps to achieve much more 
adequate reflection of the real system’s nature, 
eliminates the arbitrary - subjective choice for a 
Lyapunov’s matrix and finally results in defining 
much less conservative admissible sets. 
 
The rest of the paper is organized as follows. The 
statement of the problem is given in section 2. Some 
aspects concerning linear matrix and vector 
equations, which are closely related to the main 
result, are presented in section 3. The main result is 
obtained in section 4. It contains a new 
characterization of the sets of stable and positive - 
definite matrices and an extension of these important 
results for the case considered here. Various 
solution’s aspects are widely discussed in section 5. 
Two examples, illustrating the abilities of the 
suggested approach are solved in section 6. 
 
 

2. THE ROBUST STABILITY PROBLEM 
 
Consider the state - space model of a linear system 
(1)               dx/dt = Ax,    x ∈  R n ,                 
where  A  is a constant and stable  n × n  real matrix, 
i.e.  A ∈  S , S ≡ { A : λ ∈  σ (A) ⇒  Re λ < 0}. The 
set of eigenvalues of  A is denoted by  σ (A). The 
stability problem for any system modelled by eq.(1) 
refers to stability of it’s state coefficient matrix, 
which will be considered in this regard from now on. 
Let  p, p ≥ 1, real scalar parameters, varying in some 
unknown intervals ( zero included), perturb  s  known 
entries of  A. This corresponds to the presence of 
structured parametric uncertainty in a stable matrix 
and can be modelled as A + ∆ , where  

(2)             ∆ = α i
i

p

iA
=
∑

1

 , α α αi i i
− +≤ ≤   

The constant and known matrix  Ai defines the 
influence structure for the  i -th uncertain parameter  
αi over one or more entries of  A. Define the 
uncertain vector  α as: α = (α1 α2 ... αp)T. The robust 
stability problem for this class of uncertain matrices 
is stated as: determine an admissible vector set Ω* , 
such that 
(3) α α α α∈ ⇔ ≤ ≤ ⇒ + ∈− +Ω ∆* A S, 

where α + and α −  are constant vectors, which 
should be determined. All vector inequalities are 
intended element - by - element. 
 
The general scheme, followed by all approaches 
aimed at solving the above stated problem by using 
fixed Lyapunov’s function, consists in the following. 
According to Lyapunov’s stability theorem 
(4) A ∈ S⇔ + = −~ ~ ,A P PA QT  Q ∈ P, P ∈ P, 
~ ,A WAW= −1  rank W = n, where P denotes the set 

of symmetric, positive definite matrices. Since A is a 
stable matrix, the solution P (called Lyapunov’s 
matrix) exists uniquely, for any fixed right-hand side 
matrix Q ∈  P. Then, A + ∈∆ S, if 
~ ~ .∆ ∆T P P Q+ < By imposing various restrictions 

onα , it is always possible to find an admissible 
vector set Ω* , such that robust stability for the 
uncertain matrix is sufficiently guaranteed. 
 
Contrary to this, the purpose here is to determine a 
matrix R( )∆ ∈ P, such that: 

(i) ( ~ ~) ( ) ( )( ~ ~) ,A R R AT+ + + <∆ ∆ ∆ ∆ 0 α ≠ 0,  

(ii)     
~ ( ) ( ) ~ ,A R R A QT 0 0+ = −  α ≡ 0,  

which means, that only for ∆ ≡ 0, the Lyapunov’s 
matrix R P( )0 ≡ is a fixed one.  
 
 

3. LINEAR MATRIX AND VECTOR 
EQUATIONS 

 
Consider a linear in the unknown matrix  X  equation 
(5)   XY Y X Z Y R Z RT n n n n+ = ∈ ∈× ×, , ,  

and the mapping vec: R Rn n n× →
2

given by 
(6.1)      X vec X x xij→ ≡ = ( ) , 

(6.2)       Z vec Z z zij→ ≡ = ( ) . 
For a given linear transformation  

T R Rn n n n: × ×→
2 2

, there exists an unique matrix  
M(Y), such that eq.(5) can be put in a vector form as: 

(7)         M Y x z M Y R n n( ) , ( )= ∈ ×2 2

,  
for all  X. Equation (5), respectively eq.(7), has an 
unique solution for any right-hand side, if and only if 
(Horn and Johnson, 1991): 
(8)           σ σ( ) ( )Y Y∩ − ≡ ∅                          
The transformation of eq.(5) into eq.(7) is not 
practically justified in the general case. Fortunately, 
there exists a case, when the order of eq.(7) can be 
significantly decreased. Suppose, that Z Z T= −  in 
eq.(5).It can be easily shown, that the solution matrix  
X is a skew-symmetric one as well, i.e. 



X X T= − with entries xij = 0 , for i = j and 

x xij ji= − , otherwise. The associated with matrices  
X  and  Z  vectors (6.1) and (6.2) become: 
x x x x x x x xn n n= − − −( ... ... ...0 012 13 1 12 2 13 1         

−x n
T

2 0... ) ,  
z z z z z z z zn n n= − − −( ... ... ...0 012 13 1 12 2 13 1   

−z n
T

2 0... ) .  
For the sake of simplicity and without any loss of 
generality, a change in subscripts for  i < j is 
suggested, according to which the couples  (i,j)  are 
transformed as follows: 

  
( , ) , ( , ) ,..., ( , ) ,
( , ) ,..., ( , ) , ( ).
1 2 1 1 3 2 1 1
2 3 1 11

2

→ → → −
→ − → = −

n n
n n n k k n n

 

The solution and right-hand matrices can be 
presented as: 

     X x Ii
i

k

i=
=
∑

1

,    Z z Ii
i

k

i=
=
∑

1

,   I Ii i
T= − , 

where Ii  is a respective matrix with only two non-
zero , symmetrically positioned entries (1 and -1). 
Equation (5) is rewritten as: 

(9) x Y z Ii
i

k

i i
i

k

i
= =
∑ ∑=

1 1

,Y I Y Y I Yi i
T

i i
T= + = − . 

This presentation of eq.(5), for Z Z T= −  clearly 
shows, that it can be put in a vector form as: 
(10)     M Y x z( ) = ,  M Y R k k( ) ∈ × , 

        x x x xk
T= ( ... )1 2 , z z z zk

T= ( ... )1 2 . 
Therefore, taking into account the specific structure 
of any skew-symmetric matrix helps to decrease 
significantly the order of eq.(7), which is important 
for the practical application of the present research.  
 
 

4. MAIN RESULT 
 

Recall Lyapunov’s theorem (4). The next two 
theorems show in an alternative way the close 
relation between sets  S  and  P, realized through 
another matrix set    S − ≡ + <{ : }S S ST 0  and 
make possible to characterize uniquely the sets of 
stable and positive definite matrices. 
 
Theorem 4.1. A matrix X ∈  S, if and only if 
(11)           X=YZ,  Z∈ P,   Y∈ S −

.  
Proof. Let X ∈  S . For any Q ∈  P , there exists a 
matrix G ∈  P  , such that  XG GX QT+ = −2 .  
Then  

    
XG Q XG Q F F
X Q F G YZ

T T+ = − + = = − ⇒

= − + =−

( )
( ) ,1

 

as required. Let (11) holds for some matrix  X . 
Therefore,  XZ Z X T− −+ <1 1 0 , which is 
possible, if and only if X ∈  S. 
 

Theorem 4.2. A matrix Z = Z T ∈  P , if and only if  
 (12)      Z=YX,    X ∈  S ,     Y ∈  S −

. 

Proof. Let Z ∈  P . Then for any matrix  Y ∈  S − , 
     ZY Z ZY Z X Z ZXT T− −+ = + <1 0  , 
which is possible, if and only if X = Y −1 Z ∈  S , or   
Z=YX  is the required presentation. 
Let (12) holds for some matrix  Z Z T= . Then  
X Z ZXT− −+ <1 0 . Since X ∈  S , the unique 

solution  G to the Lyapunov’s equation  
X G GX X Z ZXT T− − − −+ = +1 1  is a symmetric, 

positive definite matrix. Obviously  G = Z and 
consequently Z ∈  P . 
These theorems play a basic role in the derivation of 
the main result, which is to a great extent their 
application for the case of an uncertain matrix 
robustness study, considered here. 
 
Theorem 4.3. The uncertain matrix  A + ∈∆  S  , 
if  
(i)            − ∈Y  S ,   Y I A= + −∆ 1    

(ii)           FY R RT= = , − ∈F  S
−
, 

(iii)          A FT ∈  S −
. 

Proof. Let (i) holds.If  R, as defined in (ii), is a 
symmetric matrix and since R F Y= − −( ) , 
according to Theorem 4.2., then it is also a positive  
definite one, i.e. R ∈  P. Symmetry and positive 
definiteness are preserved by multiplying  R  by A  
and AT from the right and from the left, 
recpectively. Therefore, 
A F A A F A RT T T( ) ( ) ,+ = + = >∆ ∆ 1 0  or 

A A F RT+ = −∆ ( ) 1
1 .If (iii) is valid, according 

 to Theorem 4.1. it follows, that  A + ∈∆  S . 
 
 

5. SOLUTION ASPECTS 
 
(a1) Requirements (i), (iii), Theorem 4.3. Their 
satisfaction consists for the general case in the 
solution of a linear matrix inquality problem with 
respect to vectors  α  and x, i.e. 
         α α α α∈ ⇔ ≤ ≤ ⇒− +Ω1 1 1  

       − + ∈
=

− −∑[ ]I LA A Li
i

p

iα
1

1 1
 S

− ,  

           x x x xx∈ ⇔ ≤ ≤ ⇒− +Ω  



           ( )A P x A IT
i

i

p
T

i+ ∈
=
∑

1

 S
− , 

where P ∈ P  is the unique solution to eq.( 4) and 
L is any nonsingular matrix. There exist various 
techniques for the purpose, e.g. (Boyd and Ghaoui, 
1994; Gao and Antsaklis, 1993; Wang, et al. 1991, 
etc.) 
 
(a2) Requirement (ii), Theorem 4.3. It is important 
now, to answer the question: how one can determine 
a matrix  F, such that R RT=  for  − ∈F  S

−
. 

Let matrix  F  be chosen as F X P= +  , where 
X X T= −  is an unknown matrix.The condition for 

symmetry can be rewritten as eq.(5), where 
Z A P P A ZT T T= − = −− −∆ ∆ 1 . Therefore, the 
solution X  is also a skew-symmetric matrix. First of 
all, it should be underlined, that this choice for  F  
guarantees that − ∈F  S

−
. Secondly, due to (i) , 

Theorem 4.3., condition (8) for an unique solution  X 
, for any right-hand side matrix is always satisfied 
forα ∈Ω 1 .  
 
(a3) Computation of matrix M Y[ ( )]α and vector 
z( )α .  Consider the uncertain matrix ∆  in eq. (2) 
and eq.(9). For this special case, one has: 

                Y I D Yi i j ij
j

p

i
T= + = −

=
∑2

1

α , 

        Z Z z I Zj
j

p

j i
i

k

i
T= = = −

= =
∑ ∑α α

1 1

( ) ,  

               D I A A A A Iij i j
T

j
T

i= +− −1 ,  

                Z A A P PA Aj
T

j
T

j= −− −1 . 

The constant matrices D Dij ij
T= −  and 

Z Z i kj j
T= − =, , ,...,1 2  and j p= 1 2, ,..., , can 

be easily computed. The respective vector form 
(eq.(10)) of  eq.(9)  is 
(13)   M Y x I M x z[ ( )] [ ( )] ( ).α α α= + =2  
The entries of  M ( )α and z( )α are some linear 
functions of the uncertain vector α . 
Comments(1).The Lyapunov’s matrix, by means of 
which robustness is studied in this case is 
   R FY( )∆ = =  ( )( )X P I A+ + ∈−∆ 1

P  . 
When Lyapunov’s stability theorem (4) is applied for 
A + ∆  and W A= , one can easily verify, that 
( ) ( ) ( )( )A A A R R A A AT+ + + =− −∆ ∆ ∆ ∆1 1  

 ( ) ( ) ,I A V I AT+ + <− −∆ ∆1 1 0  

where V A X P X P AT T= + + + <( ) ( ) ,0   

in accordance with Theorem 4.3. For all 
∆ ∆≠ 0, ( )R  depends on the uncertain part. The 
only case when R( )∆ is a fixed, constant matrix is 
for ∆ = 0 , since X=0 and R P( )0 = . 
 
(2). Requirement (iii), Theorem 4.3. imposes a 
restriction on the solution vector  x. When eq.(13) is 
taken into consideration, one has to solve the vector 
inequality 
         2 2 2x x z M x x− +≤ = − ≤( ) ( ) .α α  
The solution to it, α ∈Ω 2 is obtained by checking 
all extreme cases (so called corner vectors) for α  
and x x∈Ω .  
The solution to the overall problem (3) is given by 
α ∈ ≡ ∩Ω Ω Ω* .1 2  
 
(3). Matrix M Y( )  does not depend on the choice 
for matrix  Q, respectively matrix  P. Therefore, 
when a particular case is studied, changes may occur 
only in vector z( ).α   

(4). In the special case, when L T LA∆ ∆= ,  where 

T ∆  denotes an upper (lower) triangular matrix, for 
some nonsingular matrix  L, problem (i), Theorem 
4.3. has an exact solution. It can be prooved, that  
M(Y)  is also a triangular matrix, but due to lack of 
space, this is omited.  
 
 

6. EXAMPLES 
 

6.1. Consider a second order uncertain system  

         A + =
− + − +

−








∆

1 1
1 0

1 2

3

α α
α

, 

A + ∈∆ S⇔ < < <α α α1 2 31 1 1, , . 
Matrix  Y  is computed as 

Y =
− −

−










1
0 1

2 1 2

3

α α α
α

,  

− ∈Y S⇔ α α2 31 1< <, . Let Q =










2 1
1 2

 

 in eq.(4). The scalar solution (k=1) to eq.(11) is 
     x = − + + − − −( )( ) .2 21 2 3 2 3

1α α α α α  
Requirement (iii), Theorem 4.3. is met, if x > −1. The 
admissible subset Ω2  can be defined easily as 
α 1 1< .  The final solution to this example is given 
by α α1 21 1< <,  and α 3 1< ,  which is just the 
exact one. 
 
6.2. Consider a third order uncertain system  



A + =
− + −

− +
− − −

















∆
1 0 1

0 3 0
1 2 4

1

2

α
α , 

A + ∈∆ S ⇔α 1 <1.75 and α 2 < 3.  

For L L LL I andT T=
















= =
0 1 0
1 0 0
0 0 1

,  

Y I A= + −1∆,  one has 

LYLT =
−

− −
−

















1 0 333 0 0
0 0952 1 05714 0
0 0952 01429 1

2

2 1

2 1

.
. .
. .

α
α α
α α

, 

 
− ∈Y S⇔ < <α α1 2175 3. , .  

For Q A AT= ( ) 1
2  in eq.(4), the vector form 

(eq.(10)) of eq.(9) is 
2 05714 03333 01905 01429

0 2 05714 0
0 00952 2 03333

1 2 2 1

1

2 2

− − −
−
− −

















=
. . . .

.
. .

α α α α
α

α α
x  

 
− +















0 0161 0 0573
0 0673
0 0876

1 2

1

2

. .
.
.

α α
α
α

 

It was found, that requirement (iii), Theorem 4.3. is 
guaranteed, if  

( . . . ) ( . . . ) .− − − ≤ ≤09 01178 06 08333 01178 03T Tx  
When the admissible extreme values for x are 
substituted, the subset Ω2  is defined from the 
inequalities: 
             0503 0 357 166661 2. . . ;α α+ ≤  
                 0553 0 265 181 2. . . ;α α+ ≤  

     
01346 0 2356 0199 0 6
01236 12

1 2

2

. . ; . . ;

. . .
α α
α

≤ ≤
≤

 

The results obtained here are comparised with those 
get by other two approaches, using fixed Lyapunov’s 
matrix P. The comparison is done for one and the 
same matrix P. 
The uncertain state matrix A + ∈∆  S , if: 
(i)  parameter dependent Lyapunov’s matrix 
        −∞ < <α 1 175. ;       −∞ < ≤α 1 118. ;  
        −∞ < ≤α 2 2 2. ;        −∞ < <α 2 3;  
 
        −∞ < ≤α 1 16. ;         −∞ < ≤α 1 154. ;  
        −∞ < ≤α 2 2 41. ;      −∞ < ≤α 2 2 5. ;  
 

(ii) fixed Lyapunov’s matrix (Mansour, 1988) 
− ≤ ≤4198 1731α . ;        − ≤ ≤45 01α ;  

− ≤ ≤ − ≤ ≤85 0 25985 2 832 2α α; . ;      
 

− ≤ ≤ − ≤ ≤3600 16 2998 011 1α α. ; . ;  
− ≤ ≤ − ≤ ≤3400 1 24591 2 52 2α α; . ;  

 
(iii) fixed Lyapunov’s matrix (Gao and Antsaklis, 
1993) 
− ≤ ≤ − ≤ ≤3333 173 57 0 0471 1α α. ; . ;  
 − ≤ ≤ − ≤ ≤17 0 02 2500 2 72 2α α. ; . ;  
 
− ≤ ≤ − ≤ ≤3062 16 330 017241 1α α. ; .  
− ≤ ≤ − ≤ ≤204 0 023 2252 2 52 2α α. ; . .  
Although, as expected, the results obtained by the 
suggested here approach are considerably better, it 
should be stressed on the fact, that when such a 
powerful approach (Mansour, 1998) is applied, upper 
positive bounds on α 2  and α 1  cannot be 
established in the first two cases, respectively. 
 
 

7. CONCLUSION 
 
The robust stability problem for a class of uncertain, 
linear, dynamic systems is considered in this 
research. The main purpose consists in the 
construction of a Lyapunov function (matrix), which 
depends on the uncetain part and thus reflects much 
more adequately it’s nature in comparison with the 
case when a fixed one is used. It is shown, that 
whenever a stable matrix is perturbed by an additive 
uncertain matrix with entries varying in some 
unknown intervals, it is always possible to get a 
solution by this approach.  
 
The main contribution to system’s robustness study is 
due to Theorem 4.3., which extends the important 
results get by Theorem 4.1. and 4.2. for the class of 
systems considered here. The applicability of this 
approach and it’s superiority over some available 
ones is illustrated by two examples.It is believed, that 
the philosophy of the present approach can be used to 
define necessary and sufficient condition for robust 
stability for a nominal state matrix, influenced by a 
given structured perturbation uncertainty in terms of 
a parameter-dependent Lyapunov matrix. 
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