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T. lwasaki *

* Department of Mechanical and Aerospace Engineering
University of Virginia, Charlottesville, VA, USA
Email:iwasaki @virginia.edu

Abstract: The vast majority of literature on control theory has focused on stability and
certain regulation performances with respect to equilibrium points of dynamical systems.
On the other hand, there are many practically important problems that are concerned with
control specifications described by periodic motions. This paper makes an initial attempt
to investigating the potential of biological oscillators for use as a new feedback control
architecture to achieve such objectives. In particular, we use the Lur'e neuron model to
construct a biological oscillator and demonstrate by a simple pendulum example that the
oscillator is capable of robustly exciting the natural motion of the mechanical system.
Interestingly, an oscillator of the same architecture but with a simpler neuron model, similar to
those used in artificial neural network literature, does not seem to have the robust self-excitation
capability. Practical implications of the result are discussed.
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1. INTRODUCTION worked in a specific way that allows for generation

_of stable limit cycles with appropriate phase and fre-
The past century has seen tremendous technologicafyency. The architecture of CPGs has been exten-

developments that yielded today’s human-made ma-sjvely studied for a wide variety of animal locomo-
chines with extreme speed and accuracy. Yet, thesgjons, and their mathematical models have been de-
state-of-the-art machines often lack important func- veloped and validated by comparing simulation re-
tionalities such as robustness, adaptability, and auton-gyjts with experimental observations; Orlovsky et al.
omy. Addition of these properties would completely (1999). Thus, tremendous amount of knowledge has
change the way we define “machines” as well as the peen generated through experimental studies to ex-

way we live, think, and act, just like the presently p|ain how biological motion control systems work.
available machines did in the past. Various function-

alities of living entities have motivated researchers to HOWever, such knowledge has not been fully utilized
investigate biologically inspired machines and devices O engineering design — in particular for feedback
to realize such sophistication: Hirose (1993); Gelenbe CONtrol design. One possible reason would be the fact
(1997): Noor et al. (2000). Our research is along the that vast majority of c_o_ntr_ol Ilter_ature has fo_cused
same line but is focused upon biological mechanism of UPON stability of an equilibrium point and certain reg-

animal locomotion that has not been fully investigated ulation and/or disturbance attenuation performances
from a dynamical systems point of view. around the equilibrium. Therefore, the outcome of

CPGs, stable limit cycle, is often considered unde-
Biologists have found a physiological evidence that sjraple within that context. On the other hand, many
rhythmic motions of animals, such as walking, swim- - ¢ontrol problems in practical applications involve gen-
ming, crawling, and flying, are generated by certain gration of dynamical motion which is periodic. For

neuronal elements called central pattern generatorss,ch problems, adopting CPGs as the basic control ar-
(CPGs). A CPG consists of a group of neurons net-



chitecturemayprovide anew paradignfor theoretical
studyof dynamicalkystemshatleadsto practicalreal-
izationof robust,adaptve,andautonomousnachines.

Someanalysisresultson CPGsare available in the
field of biological cybernetics.One of the most re-
markableamongothers,in our view, is the work by
Matsuoka(1985,1987).He proposeda secondorder
modelfor aneuronstudiedfrequeng andpatterncon-
trol mechanismf severalknown CPGarchitectures
including the reciprocalinhibition network; Friesen
(1994) and the recurrentcyclic inhibition network;
Friesenand Stent(1978). Oscillatory natureis math-
ematically proven for the solution of the differential
equationdescribingeachCPG. This result hasbeen
utilized, with somesuccessin robotics applications
to generatappropriategaits; Taga(1995).

Matsuokas work may be differentiatedrom the ma-
jority of artificial neuralnetwork (ANN) literaturein
that biological knowledge,i.e. CPG architecturesis
exploitedin theanalysisHowever, Matsuokasneuron
model,like thosein the ANN literature,is notcapable
of generatingspike trainswhich may be viewed asa
fundamentalcharacteristioof neurons.The question
is: Does the dynamics of individual neuron, respon-
sible for generating spike trains, play a crucial role
for CPGs to achieve robustness and autonomy?

The objective of this paperis to provide an example
that suggests(but still doesnot confirm) the affir-

mative answer In particulay we focus on the ability

of biological oscillatorsto make mechanicakystems
self-excited. We shav that a neuronaloscillator can
act as a feedbackcontroller to efficiently sustaina

pendulumoscillationat its naturalfrequengy whena

neuronmodel capableof spike generations usedas
the basicunit of the oscillator Moreover, the ability

of self-excitationseemsconsiderablywealenedif the

Matsuokamodelis used.

2. NETWORKED NEURONAL OSCILLATOR

ThesimplestCPGconsistof two neuronswith mutu-
ally inhibitory synapticconnectionsandis calledthe
reciprocal inhibition oscillator (RIO); Brown (1911).
Theblockdiagramof theRIO is shovnin Fig. 1 where
two neurons\ areconnectedia inhibitory synapses
with strengtho; (¢ = 1,2). The RIO is driven by
exogenousnputsr; andgeneratesscillatoryoutputs
V;.
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Fig. 1. Reciprocalinhibition Oscillator

This type of biological oscillatorshave beenstudied
usingdetailedneuronmodelswith supportingbiolog-

ical data;FriesenandStent(1978);Friesen(1994),as
well assimplifiedmodelswith mathematicahnalysis;
Matsuoka(1985, 1987). While the former approach
focuseson accuratelyreproducingthe biological be-

havior, the latter tries to rigorously analyzethe dy-

namic behaior using simple modelsat the expense
of reality.

Iwasakiand Zheng (2002) have proposedthe Lur'e

neuronmodel that has lower compleity than those
usedby Friesenet al. but capturesessentiaheuronal
dynamicsincluding the mechanisnfor spike gener

ation. In the sequel,we shall comparethe RIO con-
sisting of the Lur'e neuronmodel (RIOL), and the
RIO basedon the simpler Matsuokaneuronmodel
(RIOM), which is probably the most popular in

robotic applications.The RIOL andRIOM aregiven
by Fig. 1 with A/ replacedby A, and NV, respec-
tively, which are definedin the appendix.For the
RIOM, thetwo inputsr; andr; take the samevalue
r1 = ro =: r andthesynapticstrengthis choseras

g1 = 09 = 1.5.

For the RIOL, only oneof thetwo inputsis usedand
thusr := rq is takenastheinputandr; is setto zero,
andthe synapticparametersire

g1 =09 = 8
For bothcasesthetime unit is takenasms.

Figs.2 and3 shav the behaiors of theRIOM andthe
RIOL, respectiely, in responsdo the constantinput
r(t) = 1. The initial condition of the RIOL is set
to the resting (equilibrium) values,while that of the
RIOM are chosenrandomly sincethe RIOM would
not oscillateif it startsfrom its equilibrium statedue
to symmetryof the system.In eachfigure, the dark
curve andthe light curve plot the time coursesof the
variablesv; and w;, respectiely, wherei (= 1,2)
is the index to label the two neurons.We seethat
our RIOL generate®scillatory bursting (spike train)
behaior wherewv; andwv, are out of phaseto each
other TheRIOM behavessimilarly exceptfor thefact
thatit generatesiot spikesbut “averaged”spikes,for
thevariablesy; in RIOM correspondso thefiring rate
ratherthanthe actualmembrangotential.

There is a more fundamentaldifference.When the
magnitudeof the constantinput » is changed,the
outputsof the RIOM only scalesin magnitudejust
like linearsystemswvhenr > 0. If r is negative, then
no oscillationsoccur On the other hand,the RIOL
hasathresholdbelon which the outputsarenolonger
oscillatory Moreover, themagnitudeof theoutputsare
almostinvariantwith respectto the input magnitude
aslong astheinput magnitudeis above thethreshold.
FortheparticularRIOL consideredere thethreshold
valueis foundto beaboutr = 0.382, andfor theinput
abovethis value,the profile andthefrequeng (period
2 (.187s) of the oscillatory outputsare insensitve
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Fig. 2. Behavior of theRIOM
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Fig. 3. Behavior of theRIOL

to the input magnitude.In fact, a brief pulse input

(ratherthanastepinput) of appropriatenagnituden r

suficesto generatesustainedspiky oscillationfor the
RIOL, while the oscillation of the RIOM terminates
whentheinputr becomegzero.

3. SELF-EXCITATION OF PENDULUM
3.1 Problem formulation

We now applytheRIOsin theprevioussectionto drive
a simple mechanicalsystem.Considera pendulum
with length £ and a point massm at the tip. The
equationof motionis givenby

me?0 + cf + mglsin@ = 7 — 7_ (1)

whereg isthegravity constante is theviscousriction
coeficientatthejoint, andr, andr_ arethe applied
torquesin the positive and negative directions.This
simpleapparatusnay capturethe mostbasicdynam-
ics of animal body for locomotion. For instance,it
can be thoughtof asan arm or a leg driven by the
extensorandtheflexor musclesBoth . andr_, to be
generatedy anRIO, arerestrictedio be nonneyative,
which correspondgo the fact that the musclescan
only producecontractve forces.

The objective is to designa feedbackcontroller that
determineghetorqueinputr := 7, — 7_, basedon
theinformationon the pendulumangled, to excite the
pendulumfrom the resting position and to maintain
an oscillationin the presenceof the enegy lossdue

to friction. Intuitively, the most “efficient” solution
would be to make the pendulumoscillateat its (un-

damped)naturalfrequeng, provided the dampingis

sufficiently small. In this case,the pendulumis said
to be self-excited and we call such behaior of the

pendulumnatural motion. Thuswe may seeka self-

exciting controllersuchthatthe resultingclosed-loop
systemoscillatesat the undampedhaturalfrequeny

of theoriginal system.

The simplestsolution to this problem,in the steady
state,is 7 = ¢ to cancelthefriction force. However,

the resultingoscillationis not structurallystable that
is, an arbitrarily small perturbationin the damping
coeficient of (1) can make the systembehae in a
qualitatively differentmanner(e.g.from oscillationto

cornvergenceto the origin). On the otherhand,we de-
sireto achieve astructurallystableoscillationfor prac-
tical purposesWith this additionalstability require-
ment,the problemat handseemdifficult, or at least,
nontrivial. Our hypothesispasedon obsenations of

biological systemsis thata neuronaloscillatorwould

becapableof solvingthis problem.Below, we provide

striking simulationresultsthat supportour hypothe-
sis. We also shav that our neuronmodel works for

this purposebut amodelwithoutfiring capability (the
Matsuokamodel)doesnot.

3.2 Solution by RIO

Considethefeedbacksystenof thependulumandan
RIO depictedin Fig. 4 wherewe substituteRIOL or
RIOM for theRIO. Thependulumangled is measured
andconditionedby a saturation-like function tanh(-)
beforeenteringthe RIO. The torquesry andr_ are
simply set by rectifying the quantitiesproportional
to the outputsof the RIO as7, = ¢(uyv1) and
7— = @(u—_vy) wherep(z) := max(z,0). While
moresophisticatedensingandactuatingmechanisms
may be beneficialfor certain purposesthis simple
configuratiorturnsoutto bejustadequatdor generat-
ing sustainedscillations Finally, anexogenouspulse
signalg will beusedto initiate the oscillation.

For simulation purposesjet us put the equationof
motionfor the penduluminto the following canonical
form:

_ 0
O Pendulum >
T T+ |+
% 2
tanh
B Bt
U2 U1
RIO . O~

Fig. 4. Pendulundrivenby RIO
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Fig. 5. Behavior of the Pendulum—RIOLsystem

6+ 2¢wb + W’ sinf = (1, —7_)/J

whereJ := m#? is the momentof inertia, andw :=
Vg/t and ¢ := ¢/(2Jw) are the undampednatu-
ral frequeny andthe dampingratio of its linearized
system.In the following simulations,the momentof
inertiaandthe dampingratio arefixedto J = 1.6 x
10~%kg - m? and ¢ = 0.1, the gravity constantis
g = 9.8m/s?, andthe periodof thelinearizedsystem
isT := 27 /w = 0.4s. Weshallcall T’ thefundamental
period of the pendulum.Whenthe pendulumis free
from dampingandforcing, its periodof oscillationis
closeto T' if theamplitudeis small,andgetslongerif
theamplitudebecomedarger. As before thetime unit
for bothRIOL andRIOM modelsaretakento bems.

Fig. 5 shavs the simulationof the feedbacksystem
in Fig. 4 with RIO replacedby RIOL wherepu, =
p— = 0.04. A pulseinput ¢ of duration0.1s with
magnitudel is appliedattime ¢ = 0 with the resting
initial conditions

6(0) = 9(0) =0, v;(0) = Vrest, w;(0) = Wrest

wherev.esy andw,est aregivenin (A.1). We seethat
thependulunstartso oscillateandits amplitudegrad-
ually increasesln the steadystate,the oscillationis
sustainedvith amplitude69.1 deg andperiod0.439s.
This oscillation is right at the natural frequency (at
this amplitude) within 0.2% accuracy and thus the
pendulumiis self-excited!

One may argue that the self-excitation capability of
RIOL is not surprising becausethe feedbackgain
= py = p_ musthave beenfinely tunedto yield
the neuronalentrainmentto the mechanicalnatural
frequeng. However, the gain p hasnot beenfinely
tuned; In fact, the self-excitation phenomenahave
beenobsened for a range of gain values. Let us
elaborateon this point.

3.3 Phase locking phenomenon

Whengy = 0, theRIOL is isolatedfrom thependulum,
and the initial kick of the pulse input ¢ generates
an unforcedoscillation asin Fig. 3. Thus the main

15 2 25 3
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frequeng contentof v, is atthe periodof 0.187s as
mentionedearlier If we increasehe feedbackgain p
gradually the membranepotentialbegins to contain
spectraaroundthe period of 0.4s, which eventually
takesover the original main spectrumat 0.187s. If u
is furtherincreasedthedominantspectrunremaingo
beover0.4s but graduallyshiftsto longerperiod.

To better understandthe dynamic behavior of the
whole system,Fig. 6 shavs the amplitude and the
period of the inducedpendulumoscillation as func-
tionsof thefeedbaclgain . Fromtheamplitudeplot,

we seethat the RIOL startsto excite the pendulum
abruptlywheny goesfrom 0.03328 to 0.03329, dur-

ing whichthetransitionfrom 0.2s to 0.4s occursin the
dominantperiod of v;. Onceexcited, the pendulum
continuesto increaseits oscillation amplitudeas

getslarger. The solid line in Fig. 6 (below) shavs the
periodof the pendulumoscillationfor eachvalueof

within the excitationrange.The dashedine indicates
the relationshipbetweenthe gain . and the period
of the undampedinforcedpendulumoscillationwith

the amplitudespecifiedby Fig. 6 (above). The close
alignmentof the solid and dashedlines shows that
theRIOL achievestheself-excitationof the pendulum
overtherangeof feedbaclkgains0.034 < p < 0.08.

Let us discussthe resultsfor the RIOM for compari-
son.Thesimulationis carriedoutfor thesystemgiven
in Fig. 4 with RIO replacedby RIOM. The exoge-
noustriggeringinput ¢ is takento be a pulseof unit
magnitudewith duration0.3s. The initial conditions
of thependulumandthe RIOM arechoserasfollows:
6(0) = 0,6(0) = 0, w1 (0) = w2(0) = 0, andx1(0)
and z,(0) are randomly selectedfrom a zero-mean
normaldistribution with standarddeviation 0.01. The
randomness introducedo make theinitial condition
asymmetricso thatthe RIOM is readyfor oscillation
upon receving a trigger input. The steadystatebe-
havior of the systemseemsnsensitve to therandom
initial condition.

The systemresponse®f the RIOM caseare found
qualitatively similar to the previousRIOL caseFig. 7
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plotsthe amplitudeandthe periodasfunctionsof the
gain g in the samemanneras Fig. 6 doesfor the
RIOL case.Again, thesefunctions are qualitatively
similar to thosein Fig. 6, but the oscillation period
of the pendulum(solid) deviates significantly from
that of the naturalmotion (dashed)— roughly 15%
at 4 = 0.11. The more importantadvantageof our
RIOL overtheRIOM is foundin its adaptabilityto the
ervironmentalchangeor its robustnes$o maintaining
self-excitation,asdescribedelow.

3.4 Robustness property

We now fix theRIO andthefeedbaclgain u, andvary

a pendulumparameteto seehow the RIOL andthe
RIOM adaptto thechangeof the pendulumdynamics.
In particular the gain u is setto 0.04 for the RIOL

andto a valuein theinterval 0.06 < p < 0.11 for

the RIOM. The fundamentaberiod of the pendulum
T is variedbetween0.2s and0.8s while keepingthe
momentof inertiaJ andthedampingratio ¢ constant.
This correspondghysicallyto acoordinatedsariation
of themassm andthelength/.

Fig. 8 shaws the perioderror andthe oscillationam-
plitude asfunctionsof T, wherethe formeris defined
as100(P — P,)/P,% with P andP, beingtheperiod
of the oscillationdriven by eachRIO andthat of the
naturalmotion. In eachfigure, the curve marked by
* indicatesthe result for the RIOL while the three
curvesmarked by o arefor the RIOM with different
valuesof thefeedbaclgainy asindicated We seethat
the RIOL is capableof generatingoscillationfor the
whole rangeof T" and, more importantly, it sustains
self-excited oscillation for mostrangeof T' within a
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Fig. 7. Periodandamplitudeof 8 asfunctionsof gain
1 (RIOM)

few percentof the perioderror. Onthe otherhand the
RIOM requiresa large gain i to generatescillations
for a wide rangeof T, but sucha large gain would

increasethe perioderror. Thus, a fine gain tuning is

necessanfor the RIOM to sustainthe self-excited
oscillation whenever the pendulumcharacteristicl’

changesTheseobsenationsclearly shav the advan-
tageof the RIOL overthe RIOM — its adaptabilityto

thecharacteristichangeof the objectit is driving.

4. CONCLUSION

Thepotentialof CPGcontrollersfor self-excitationof

mechanicalsystemsis investigatedvia a simple but

representatie pendulumexample.n particular robust
self-excitation capabilityis demonstratedor the RIO

with theLur'e neuronmodels Theneuronabdynamics
for generatingspike trains seemcrucial to achiese

suchcapability

Whenwe device a self-excitation mechanisnfor the
pendulumusing the RIOL, we do not needthe pre-
ciseknowledgeof systemparametersWe cansimply
clank up the feedbackgain until the pendulumis ex-
cited. Onceexcited, the pendulumwould oscillateat
its naturalfrequeng. This “blind tuning” is possible
dueto our RIOL'sautonomougntrainmentapability
which may have tremendousmplicationsin practical
applicationsRecallthatthe PID controlleris so pre-
vailing in industrymainly becauséts structureallows
for blind tuning of parametersvithout knowing the
exact plant to achievre “just enough”regulation per
formance.From this perspectie, our RIOL could be
viewed as a potentialcandidatefor the fundamental
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controlarchitecturghatplaysthe samerolein oscilla-
tion asthe PID controldoesin regulation.
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AppendixA. NEURON MODELS
A.1 The Lur’e model

The input-outputmappingof the Lur'e modelv =
N1 (u) is definedby

0 =chp(av) —bv —w +u, + ¢
W = p(¢(d(v + v,)) —w)

g=F(s)u
where
ks
F(s)= ————F———
©) = G )
1
o) = Ty
In this paperthefollowing parametevaluesareused:
U =—0.2, v,=-035, p=0.3
a=18, b=3 ¢=22 d=35,
k=001, p; =01, py,=0.01.

Vrest = 5.8798X 1072, Wresy = 3.9984x107%.(A.1)
SeelwasakiandZheng(2002)for the detail.
A.2 The Matsuoka model
Theinput-outputmappingof theMatsuokamodelv =
N (u) is definedby

i+ x=u—bw
ToW +w =0
v = max(z, 0)

wherew is thefiring rateof themembrangotential,w

is the adaptatiorvariable,u is the (current)input, and
theparameters, 7. andr, areall takento bepositive.
In this paperthefollowing parametevaluesareused:

=10, 7, =140, b=25.
SeeMatsuoka(1985)for the detail.



