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Abstract: The vast majority of literature on control theory has focused on stability and
certain regulation performances with respect to equilibrium points of dynamical systems.
On the other hand, there are many practically important problems that are concerned with
control specifications described by periodic motions. This paper makes an initial attempt
to investigating the potential of biological oscillators for use as a new feedback control
architecture to achieve such objectives. In particular, we use the Lur’e neuron model to
construct a biological oscillator and demonstrate by a simple pendulum example that the
oscillator is capable of robustly exciting the natural motion of the mechanical system.
Interestingly, an oscillator of the same architecture but with a simpler neuron model, similar to
those used in artificial neural network literature, does not seem to have the robust self-excitation
capability. Practical implications of the result are discussed.
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1. INTRODUCTION

The past century has seen tremendous technological
developments that yielded today’s human-made ma-
chines with extreme speed and accuracy. Yet, these
state-of-the-art machines often lack important func-
tionalities such as robustness, adaptability, and auton-
omy. Addition of these properties would completely
change the way we define “machines” as well as the
way we live, think, and act, just like the presently
available machines did in the past. Various function-
alities of living entities have motivated researchers to
investigate biologically inspired machines and devices
to realize such sophistication; Hirose (1993); Gelenbe
(1997); Noor et al. (2000). Our research is along the
same line but is focused upon biological mechanism of
animal locomotion that has not been fully investigated
from a dynamical systems point of view.

Biologists have found a physiological evidence that
rhythmic motions of animals, such as walking, swim-
ming, crawling, and flying, are generated by certain
neuronal elements called central pattern generators
(CPGs). A CPG consists of a group of neurons net-

worked in a specific way that allows for generation
of stable limit cycles with appropriate phase and fre-
quency. The architecture of CPGs has been exten-
sively studied for a wide variety of animal locomo-
tions, and their mathematical models have been de-
veloped and validated by comparing simulation re-
sults with experimental observations; Orlovsky et al.
(1999). Thus, tremendous amount of knowledge has
been generated through experimental studies to ex-
plain how biological motion control systems work.

However, such knowledge has not been fully utilized
for engineering design — in particular for feedback
control design. One possible reason would be the fact
that vast majority of control literature has focused
upon stability of an equilibrium point and certain reg-
ulation and/or disturbance attenuation performances
around the equilibrium. Therefore, the outcome of
CPGs, stable limit cycle, is often considered unde-
sirable within that context. On the other hand, many
control problems in practical applications involve gen-
eration of dynamical motion which is periodic. For
such problems, adopting CPGs as the basic control ar-
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chitecturemayprovideanew paradigmfor theoretical
studyof dynamicalsystemsthatleadsto practicalreal-
izationof robust,adaptive,andautonomousmachines.

Someanalysisresultson CPGsare available in the
field of biological cybernetics.One of the most re-
markableamongothers,in our view, is the work by
Matsuoka(1985,1987).He proposeda secondorder
modelfor aneuron,studiedfrequency andpatterncon-
trol mechanismsof severalknown CPGarchitectures
including the reciprocal inhibition network; Friesen
(1994) and the recurrentcyclic inhibition network;
FriesenandStent(1978).Oscillatorynatureis math-
ematicallyproven for the solutionof the differential
equationdescribingeachCPG.This result hasbeen
utilized, with somesuccess,in roboticsapplications
to generateappropriategaits;Taga(1995).

Matsuoka’s work maybe differentiatedfrom the ma-
jority of artificial neuralnetwork (ANN) literaturein
that biological knowledge,i.e. CPG architectures,is
exploitedin theanalysis.However, Matsuoka’sneuron
model,like thosein theANN literature,is notcapable
of generatingspike trainswhich may be viewed asa
fundamentalcharacteristicof neurons.The question
is: Does the dynamics of individual neuron, respon-
sible for generating spike trains, play a crucial role
for CPGs to achieve robustness and autonomy?

The objective of this paperis to provide an example
that suggests(but still does not confirm) the affir-
mative answer. In particular, we focuson the ability
of biological oscillatorsto make mechanicalsystems
self-excited. We show that a neuronaloscillator can
act as a feedbackcontroller to efficiently sustaina
pendulumoscillationat its naturalfrequency whena
neuronmodelcapableof spike generationis usedas
the basicunit of the oscillator. Moreover, the ability
of self-excitationseemsconsiderablyweakenedif the
Matsuokamodelis used.

2. NETWORKEDNEURONAL OSCILLATOR

ThesimplestCPGconsistsof two neuronswith mutu-
ally inhibitory synapticconnections,andis calledthe
reciprocal inhibition oscillator (RIO); Brown (1911).
Theblockdiagramof theRIO is shown in Fig.1 where
two neurons

�
areconnectedvia inhibitory synapses

with strength ��� ( ���	��

� ). The RIO is driven by
exogenousinputs ��� andgeneratesoscillatoryoutputs� � .
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Fig. 1. ReciprocalInhibition Oscillator

This type of biological oscillatorshave beenstudied
usingdetailedneuronmodelswith supportingbiolog-
ical data;FriesenandStent(1978);Friesen(1994),as
well assimplifiedmodelswith mathematicalanalysis;
Matsuoka(1985, 1987). While the former approach
focuseson accuratelyreproducingthe biological be-
havior, the latter tries to rigorously analyzethe dy-
namic behavior using simple modelsat the expense
of reality.

Iwasakiand Zheng(2002) have proposedthe Lur’e
neuronmodel that has lower complexity than those
usedby Friesenet al. but capturesessentialneuronal
dynamicsincluding the mechanismfor spike gener-
ation. In the sequel,we shall comparethe RIO con-
sisting of the Lur’e neuronmodel (RIOL), and the
RIO basedon the simpler Matsuokaneuronmodel
(RIOM), which is probably the most popular in
robotic applications.The RIOL andRIOM aregiven
by Fig. 1 with

�
replacedby

���
and

���
, respec-

tively, which are defined in the appendix.For the
RIOM, the two inputs ��� and ��� take the samevalue��������� �"!#� andthesynapticstrengthis chosenas

� � �$� � �%�'&)(*&
For theRIOL, only oneof thetwo inputsis usedand
thus �+!,��� � is takenastheinput and � � is setto zero,
andthesynapticparametersare

� � �$� � �$-.&
For bothcases,thetimeunit is takenas /10 .
Figs.2 and3 show thebehaviorsof theRIOM andthe
RIOL, respectively, in responseto the constantinput�3254768�9� . The initial condition of the RIOL is set
to the resting(equilibrium) values,while that of the
RIOM are chosenrandomlysincethe RIOM would
not oscillateif it startsfrom its equilibriumstatesdue
to symmetryof the system.In eachfigure, the dark
curve andthe light curve plot the time coursesof the
variables � � and :;� , respectively, where � ( �<�'

� )
is the index to label the two neurons.We seethat
our RIOL generatesoscillatorybursting(spike train)
behavior where � � and � � are out of phaseto each
other. TheRIOM behavessimilarly exceptfor thefact
that it generatesnot spikesbut “averaged”spikes,for
thevariables� � in RIOM correspondsto thefiring rate
ratherthantheactualmembranepotential.

There is a more fundamentaldifference.When the
magnitudeof the constantinput � is changed,the
outputsof the RIOM only scalesin magnitudejust
like linearsystemswhen �>=@? . If � is negative, then
no oscillationsoccur. On the other hand,the RIOL
hasa thresholdbelow which theoutputsareno longer
oscillatory. Moreover, themagnitudeof theoutputsare
almostinvariantwith respectto the input magnitude
aslong astheinput magnitudeis above thethreshold.
For theparticularRIOL consideredhere,thethreshold
valueis foundto beabout�A�B?.& C'-�� , andfor theinput
abovethis value,theprofileandthefrequency (periodD� ?E&F�G-IHJ0 ) of the oscillatory outputsare insensitive
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Fig. 2. Behavior of theRIOM
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Fig. 3. Behavior of theRIOL

to the input magnitude.In fact, a brief pulse input
(ratherthanastepinput)of appropriatemagnitudein �
sufficesto generatesustainedspiky oscillationfor the
RIOL, while the oscillationof the RIOM terminates
whentheinput � becomeszero.

3. SELF-EXCITATION OF PENDULUM

3.1 Problem formulation

Wenow applytheRIOsin theprevioussectionto drive
a simple mechanicalsystem.Considera pendulum
with length K and a point mass L at the tip. The
equationof motionis givenby

LMK �ONP Q�RTSPUQ LMV�KW0YXFZ P �B[]\ � [J^ (1)

whereV is thegravity constant,
R

is theviscousfriction
coefficient at the joint, and []\ and [J^ aretheapplied
torquesin the positive and negative directions.This
simpleapparatusmaycapturethe mostbasicdynam-
ics of animal body for locomotion.For instance,it
can be thoughtof as an arm or a leg driven by the
extensorandtheflexor muscles.Both []\ and[J^ , to be
generatedby anRIO, arerestrictedto benonnegative,
which correspondsto the fact that the musclescan
only producecontractiveforces.

The objective is to designa feedbackcontroller that
determinesthe torqueinput [8!,�_[ \ � [ ^ , basedon
theinformationonthependulumangle

P
, to excite the

pendulumfrom the restingposition and to maintain
an oscillation in the presenceof the energy lossdue

to friction. Intuitively, the most “efficient” solution
would be to make the pendulumoscillateat its (un-
damped)naturalfrequency, provided the dampingis
sufficiently small. In this case,the pendulumis said
to be self-excited and we call such behavior of the
pendulumnatural motion. Thuswe may seeka self-
exciting controllersuchthat theresultingclosed-loop
systemoscillatesat the undampednaturalfrequency
of theoriginal system.

The simplestsolution to this problem,in the steady
state,is [`� RTSP to cancelthefriction force.However,
the resultingoscillationis not structurallystable,that
is, an arbitrarily small perturbationin the damping
coefficient of (1) can make the systembehave in a
qualitatively differentmanner(e.g.from oscillationto
convergenceto theorigin). On theotherhand,we de-
sireto achieveastructurallystableoscillationfor prac-
tical purposes.With this additionalstability require-
ment,theproblemat handseemsdifficult, or at least,
nontrivial. Our hypothesis,basedon observationsof
biologicalsystems,is thata neuronaloscillatorwould
becapableof solvingthisproblem.Below, weprovide
striking simulationresultsthat supportour hypothe-
sis. We also show that our neuronmodel works for
this purposebut amodelwithout firing capability(the
Matsuokamodel)doesnot.

3.2 Solution by RIO

Considerthefeedbacksystemof thependulumandan
RIO depictedin Fig. 4 wherewe substituteRIOL or
RIOM for theRIO.Thependulumangle

P
is measured

andconditionedby a saturation-like function acb#Z.de2gf)6
beforeenteringthe RIO. The torques[ \ and [ ^ are
simply set by rectifying the quantitiesproportional
to the outputsof the RIO as []\h�	ij2lkW\ � �m6 and[J^n�hij2lko^ � �G6 where ij2lpO6$!,�q/1b#rs25pt

?�6 . While
moresophisticatedsensingandactuatingmechanisms
may be beneficial for certain purposes,this simple
configurationturnsout to bejustadequatefor generat-
ing sustainedoscillations.Finally, anexogenouspulse
signal u will beusedto initiate theoscillation.

For simulation purposes,let us put the equationof
motionfor thependuluminto thefollowing canonical
form:

�
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Fig. 4. Pendulumdrivenby RIO
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Fig. 5. Behavior of thePendulum–RIOLsystem

NP Q �'x�y SPUQ y � 0YXFZ P �z2l[ \ � [ ^ 6Y{3|
where |$!,�_LMK � is the momentof inertia,and y}!,�~ V.{�K and x�!,� R {.2��3|�y�6 are the undampednatu-
ral frequency and the dampingratio of its linearized
system.In the following simulations,the momentof
inertia andthe dampingratio arefixed to |����'& �M���? ^��m�3� f�/ � and x_��?.&�� , the gravity constantisVM���.& -#/�{#0 � , andtheperiodof thelinearizedsystem
is ��!,�$�#�e{Gy��$?.& ��0 . Weshallcall � thefundamental
periodof the pendulum.Whenthe pendulumis free
from dampingandforcing, its periodof oscillationis
closeto � if theamplitudeis small,andgetslongerif
theamplitudebecomeslarger. As before,thetimeunit
for bothRIOL andRIOM modelsaretakento be /10 .
Fig. 5 shows the simulationof the feedbacksystem
in Fig. 4 with RIO replacedby RIOL where kW\��ko^��q?E& ?'� . A pulse input u of duration ?E&F�G0 with
magnitude� is appliedat time 4U��? with the resting
initial conditionsP 25?I6�� SP 2�?�6��B?.
 � � 2�?�6�� �J�l����� 
�: � 2�?�6��B: �5�����
where � �l����� and : �l���l� aregiven in (A.1). We seethat
thependulumstartsto oscillateandits amplitudegrad-
ually increases.In the steadystate,the oscillation is
sustainedwith amplitude���.&��t�*� � andperiod ?.& ��C��'0 .
This oscillation is right at the natural frequency (at
this amplitude) within ?.&)��� accuracy and thus the
pendulum is self-excited!

One may argue that the self-excitation capability of
RIOL is not surprising becausethe feedbackgainkB!,�}kW\ ��ko^ musthave beenfinely tunedto yield
the neuronalentrainmentto the mechanicalnatural
frequency. However, the gain k has not beenfinely
tuned; In fact, the self-excitation phenomenahave
been observed for a range of gain values. Let us
elaborateon this point.

3.3 Phase locking phenomenon

When k¡�B? , theRIOL is isolatedfrom thependulum,
and the initial kick of the pulse input u generates
an unforcedoscillation as in Fig. 3. Thus the main

frequency contentof � � is at the periodof ?E&F�G-IH#0 as
mentionedearlier. If we increasethe feedbackgain k
gradually, the membranepotentialbegins to contain
spectraaroundthe period of ?.& ��0 , which eventually
takesover the original main spectrumat ?E&F�G-IHJ0 . If k
is furtherincreased,thedominantspectrumremainsto
beover ?.& ��0 but graduallyshiftsto longerperiod.

To better understandthe dynamic behavior of the
whole system,Fig. 6 shows the amplitudeand the
period of the inducedpendulumoscillation as func-
tionsof thefeedbackgain k . Fromtheamplitudeplot,
we seethat the RIOL startsto excite the pendulum
abruptlywhen k goesfrom ?.& ?'C�C��#- to ?E& ?�C'C��'� , dur-
ing whichthetransitionfrom ?E& �'0 to ?E& �I0 occursin the
dominantperiod of � � . Onceexcited, the pendulum
continuesto increaseits oscillation amplitudeas k
getslarger. Thesolid line in Fig. 6 (below) shows the
periodof thependulumoscillationfor eachvalueof k
within theexcitationrange.Thedashedline indicates
the relationshipbetweenthe gain k and the period
of the undampedunforcedpendulumoscillationwith
the amplitudespecifiedby Fig. 6 (above). The close
alignmentof the solid and dashedlines shows that
theRIOL achievestheself-excitationof thependulum
over therangeof feedbackgains?E& ?�C#�£¢¤k¥¢¦?.& ?'- .
Let usdiscussthe resultsfor the RIOM for compari-
son.Thesimulationis carriedout for thesystemgiven
in Fig. 4 with RIO replacedby RIOM. The exoge-
noustriggeringinput u is taken to be a pulseof unit
magnitudewith duration ?.& C'0 . The initial conditions
of thependulumandtheRIOM arechosenasfollows:P 25?I6 �}? , SP 2�?�6 �}? , : � 25?I6U�z: � 25?I6 �}? , and p � 25?I6
and p � 2�?�6 are randomlyselectedfrom a zero-mean
normaldistribution with standarddeviation ?.& ?.� . The
randomnessis introducedto maketheinitial condition
asymmetricso that the RIOM is readyfor oscillation
upon receiving a trigger input. The steadystatebe-
havior of the systemseemsinsensitive to the random
initial condition.

The systemresponsesof the RIOM caseare found
qualitatively similar to thepreviousRIOL case.Fig. 7
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P

asfunctionsof gaink (RIOL)

plots theamplitudeandtheperiodasfunctionsof the
gain k in the samemanneras Fig. 6 does for the
RIOL case.Again, thesefunctions are qualitatively
similar to thosein Fig. 6, but the oscillation period
of the pendulum(solid) deviates significantly from
that of the naturalmotion (dashed)— roughly ��(��
at k§�¨?.&��'� . The more importantadvantageof our
RIOL overtheRIOM is foundin its adaptabilityto the
environmentalchangeor its robustnessto maintaining
self-excitation,asdescribedbelow.

3.4 Robustness property

Wenow fix theRIO andthefeedbackgain k , andvary
a pendulumparameterto seehow the RIOL and the
RIOM adaptto thechangeof thependulumdynamics.
In particular, the gain k is set to ?E& ?'� for the RIOL
and to a value in the interval ?E& ?���¢�k_¢©?.&��'� for
the RIOM. The fundamentalperiodof the pendulum� is variedbetween?E& �'0 and ?.& -'0 while keepingthe
momentof inertia | andthedampingratio x constant.
Thiscorrespondsphysicallyto acoordinatedvariation
of themassL andthelength K .
Fig. 8 shows the perioderror andthe oscillationam-
plitudeasfunctionsof � , wheretheformeris defined
as �G?'?�25ª � ª¬«.6Y{#ªe«E� with ª and ª¬« beingtheperiod
of the oscillationdriven by eachRIO andthat of the
naturalmotion. In eachfigure, the curve marked by­ indicatesthe result for the RIOL while the three
curvesmarked by ® are for the RIOM with different
valuesof thefeedbackgain k asindicated.Weseethat
the RIOL is capableof generatingoscillationfor the
whole rangeof � and,more importantly, it sustains
self-excited oscillation for most rangeof � within a
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few percentof theperioderror. On theotherhand,the
RIOM requiresa largegain k to generateoscillations
for a wide rangeof � , but sucha large gain would
increasethe perioderror. Thus,a fine gain tuning is
necessaryfor the RIOM to sustainthe self-excited
oscillation whenever the pendulumcharacteristic�
changes.Theseobservationsclearly show the advan-
tageof theRIOL over theRIOM — its adaptabilityto
thecharacteristicchangeof theobjectit is driving.

4. CONCLUSION

Thepotentialof CPGcontrollersfor self-excitationof
mechanicalsystemsis investigatedvia a simple but
representativependulumexample.In particular, robust
self-excitationcapabilityis demonstratedfor theRIO
with theLur’e neuronmodels.Theneuronaldynamics
for generatingspike trains seemcrucial to achieve
suchcapability.

Whenwe device a self-excitation mechanismfor the
pendulumusing the RIOL, we do not needthe pre-
ciseknowledgeof systemparameters.We cansimply
clank up the feedbackgainuntil the pendulumis ex-
cited. Onceexcited, the pendulumwould oscillateat
its naturalfrequency. This “blind tuning” is possible
dueto ourRIOL’sautonomousentrainmentcapability,
which mayhave tremendousimplicationsin practical
applications.Recall that the PID controller is so pre-
vailing in industrymainlybecauseits structureallows
for blind tuning of parameterswithout knowing the
exact plant to achieve “just enough”regulation per-
formance.From this perspective, our RIOL could be
viewed as a potentialcandidatefor the fundamental
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AppendixA. NEURON MODELS

A.1 The Lur’e model

The input-outputmappingof the Lur’e model � ��M� 25¯�6 is definedbyS� � R]° 25± � 6 �³² � � : Q ¯s´ Q uS: �¦µ�2 ° 2�¶�2 � Q � ´�6Y6 � : 6uA�B·12¹¸G6g¯
where

·12�¸�6�� º ¸2¹¸ Q¡» �]6m2¹¸ Q¡» �G6
° 25pO6�!)� �

� Q½¼ �]^��c¾ &
In thispaper, thefollowing parametervaluesareused:

¯�´�� � ?.&)�*
 � ´U� � ?.& C�(*
¿µ+��?.& C
±£�%�'& -.
 ² �BCE
 R �$�.& �.
 ¶"�B(.

º �$?.& ?.��


» �;�B?.&��'
 » �U�B?E& ?E�'&� �l����� �$(.& -3HJ�'-t�;��? ^O� 
�: �l����� �$C.& �'�'-'�t�;�G? ^�� & (A.1)

SeeIwasakiandZheng(2002)for thedetail.

A.2 The Matsuoka model

Theinput-outputmappingof theMatsuokamodel � ���� 2l¯s6 is definedby

[]À Sp Q pM�B¯ ��² :[�Á S: Q : � �� �B/1bJrs2lpt

?�6
where� is thefiring rateof themembranepotential,:
is theadaptationvariable,̄ is the(current)input,and
theparameters² , [�À and [�Á areall takento bepositive.
In thispaper, thefollowing parametervaluesareused:

[�ÀU�@�G?.
 [�ÁÂ�%�]��?E
 ² � �*&)(*&
SeeMatsuoka(1985)for thedetail.


