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1. INTRODUCTION

Motivated by the need to accommodate significant
modelling uncertainty in Kalman filtering prob-
lems, considerable attention has been devoted,
over the last decade, to the so called robust H2

(or equivalently, minimum variance) filtering for
linear systems with uncertain parameters; see,
e.g. Petersen and Savkin (1999). The problem of
robust H2 filtering consists on designing a linear
stationary asymptotically stable filter that assures
a prescribed bounded (optimized in a certain
sense) for the worst-case asymptotic estimation
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Brazil, under PRONEX grant No. 0331.00/00 and CNPq
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third authors has been supported by CNPq under grants
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error variance, irrespective of the uncertain pa-
rameters. Riccati equation approaches have been
proposed for linear systems subject to norm-
bounded parameter uncertainty in the state-state
model (Bolzern et al., 1994; Petersen and Mc-
Farlane, 1991; Shaked and de Souza, 1995; Xie
and Soh, 1994), whereas systems with polytopic-
type parameter uncertainty have been recently
treated in de Souza and Trofino (2000) and
Geromel (1999) using LMI methodologies. The
aforementioned methods are based on the notion
of quadratic stability and have the advantage that
they are computationally simple. However, they
have the drawback that stability and the guar-
anteed bound on the error variance are based on
a parameter-independent Lyapunov function, and
thus the uncertain parameters are allowed to vary
arbitrarily fast, which can be quite conservative.
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Very recently, an LMI robust H2 filtering method
has been proposed in Tuan et al. (2000) using an
affine parameter-dependent Lyapunov function.

This paper develops new robust H2 filter de-
sign methods for linear continuous-time systems
subject to uncertain parameters belonging to a
given convex bounded polytope. The proposed de-
sign methods are based on parameter-dependent
Lyapunov functions, thus reducing conservatism
compared with existing design methods. In par-
ticular, the new methods include the quadratic
stability filtering approach of Geromel (1999) as
a particular case. The results of this paper will
be demonstrated in an example that illustrates
the significant improvement that can be achieved
compared with the existing filter design methods.

The notation used in this paper is quite standard.
R

n denotes the n-dimensional Euclidean space,
R

n×m is the set of n × m real matrices, In

is the n × n identity matrix, Tr{· · ·} denotes
matrix trace, diag{· · ·} stands for a block-diagonal
matrix, and the notation S >0 for a real matrix S,
means that S is symmetric and positive definite.
For a symmetric block matrix, the symbol ?
denotes the transpose of the symmetric blocks
outside the main diagonal block.

2. PROBLEM STATEMENT

Consider the following uncertain linear system

ẋ(t) = A(θ)x(t) + B(θ)w(t), x(0) = x0

y(t) = C(θ)x(t) + D(θ)w(t)

z(t) = Cz(θ)x(t)

(1)

with θ := (θ1, · · · , θp) ∈ R
p, where x(t) ∈ R

n

is the state, x0 is zero-mean random variable,
w(t) ∈ R

nw is a zero-mean white signal (including
process and measurement noises) with an identity
power spectral density matrix which is uncorre-
lated with x0 for all t ≥ 0, y(t) ∈ R

ny is the
measurement, z(t) ∈ R

nz is the signal to be esti-
mated, θi, i = 1, . . . , p are bounded constant un-
certain parameters, and A(θ), B(θ), C(θ), Cz(θ)
and D(θ) are real matrices of appropriate dimen-
sions that depend affinely on the parameter vector
θ. It is assumed that θ belongs to a polytope B,
with ` known vertices.

The aim of this paper is the design of a stationary
asymptotically stable linear filter F which pro-
vides an estimate ẑ of the signal z with a guaran-
teed performance in the H2 sense, irrespective of
the uncertain parameters. The filter is assumed to
be of order n and with a state-space realization

F : ẋf (t) = Af xf (t) + Bfy(t), xf (0) = 0

ẑ(t) = Cf xf

(2)

where the matrices Af ∈ R
n×n, Bf ∈ R

n×ny and
Cf ∈ R

nz×n are to be found. This paper is focused

on finding a filter F that ensures asymptotic
stability for the estimation error dynamics and
minimizes a suitable upper-bound µ(F) for the
worst-case asymptotic error variance, namely:

min
F

µ(F) : sup
θ ∈B

E[(z − ẑ)T(z − ẑ)] ≤ µ(F) (3)

where E denotes mathematical expectation.

The dynamics of the estimation error e = z−ẑ can
be described by the following state-space model

ẋa(t) = Aa(θ)xa(t) + Ba(θ)w(t)

e(t) = Ca(θ)xa(t)
(4)

where

xa =

[

x
xf

]

, Aa(θ) =

[

A(θ) 0
BfC(θ) Af

]

,

Ba(θ)=

[

B(θ)
BfD(θ)

]

, Ca(θ)=
[

Cz(θ) −Cf

]

.

(5)

It is well known that the above filtering problem
can be solved via an optimization problem in
terms of either the controllability or observability
Gramians associated with the estimation error
system (4); see, e.g. de Souza and Trofino (2000)
and Geromel (1999). The basis for this approach
is the following lemma which provides bounds
for the worst-case asymptotic error variance. This
lemma is a simple extension of well known results
(Green and Limebeer, 1995) to the context of
parameter-dependent matrices.

Lemma 1. Given the system (1) and a filter of the
form (2), the following conditions hold:

(a) If there exist symmetric matrices P (θ) and
W (θ) such that for all θ ∈ B

[

P (θ)AT
a (θ) + Aa(θ)P (θ) Ba(θ)

BT
a (θ) −I

]

< 0 (6)

[

W (θ) Ca(θ)P (θ)

P (θ)CT
a (θ) P (θ)

]

> 0 (7)

then the estimation error system (4) is asymptot-
ically stable for all θ ∈ B and

sup
θ∈B

E[eT e] < µ; µ = sup
θ∈B

Tr[ W (θ) ]. (8)

(b) If there exist symmetric matrices P (θ) and
W (θ) such that for all θ ∈ B

[

P (θ)Aa(θ) + AT
a (θ)P (θ) CT

a (θ)

Ca(θ) −I

]

< 0 (9)

[

W (θ) BT
a (θ)P (θ)

P (θ)Ba(θ) P (θ)

]

> 0 (10)

then the estimation error system (4) is asymptot-
ically stable for all θ ∈ B and

sup
θ∈B

E[eT e] < µ; µ = sup
θ∈B

Tr[ W (θ) ]. (11)



Note that the inequalities of Lemma 1 are not
convex in θ, even when P (θ) is affine in θ and the
filter matrices Af , Bf and Cf are given. Thus,
the problem of finding Af , Bf and Cf with a
parameter dependent P (θ) is a very hard task.
In the case where a matrix P (θ) independent of
θ is used, LMI filter design methods have been
developed in de Souza and Trofino (2000) and
Geromel (1999). On the other hand, Tuan et al.
(2000) presented a method based on part (a)
of Lemma 1 using a matrix P (θ) that depends
affinely on θ. The present paper proposes two
new approaches for solving this problem using
parameter-dependent Lyapunov functions.

3. ROBUST H2 FILTER DESIGN

This section deals with the design of robust
H2 filters for the uncertain system (1) using
parameter-dependent Lyapunov functions. Atten-
tion is focused on the following class of parameter-
dependent Lyapunov functions

P (θ) = MT N−1(θ)M > 0, ∀ θ ∈ B (12)

where N(θ) is a positive definite matrix which
depends affinely on θ and M is a nonsingular
constant matrix.

The first result presents a robust H2 filter design
method based on the inequalities (6) and (7) of
Lemma 1 with a matrix P (θ) as in (12).

Theorem 1. Consider the system (1) and let B be
a polytope of admissible θ. Suppose that for some
scalar ε > 0 there exist matrices Z ∈ R

n×n, Y ∈
R

n×n, S ∈ R
n×n, F ∈ R

n×ny , R ∈ R
nz×n, Q ∈

R
n×n, and symmetric matrices Ni ∈ R

2n×2n and
Wi ∈ R

nw×nw, i = 1, ..., ` such that the following
inequalities are satisfied at all the vertices of B







ΨA(θ) + ΨT
A(θ) ? ?

ΨT
M +εΨT

A(θ)−N (θ) −2εN (θ) ?

ΨT
B(θ) 0 −I






< 0 (13)

[

W (θ) ΨC(θ)

ΨT
C(θ) N (θ)

]

> 0 (14)

where W (θ) and N (θ) are affine matrix functions
of θ with values W1, . . . , W` and N1, . . . ,N`, re-
spectively, at the vertices of B and

ΨA(θ)=

[

ZA(θ) ZA(θ)
Y A(θ)+FC(θ)+Q Y A(θ)+FC(θ)

]

,

ΨB(θ) =

[

ZB(θ)
Y B(θ)+FD(θ)

]

, (15)

ΨC(θ)=
[

Cz(θ)−R Cz(θ)
]

, ΨM =

[

Z Z
Y +S Y

]

.

Then the filter F with transfer function matrix

Gẑy(s) = RS−1(sI − QS−1)−1F (16)

ensures that the estimation error system (4) is
asymptotically stable for all θ∈B and the asymp-
totic error variance satisfies

E[eT e] < max
i=1,...,`

Tr [Wi], ∀ θ ∈ B. (17)

Proof. First, note that since the inequalities of (13)
and (14) are affine in θ for a given ε > 0, then they
are satisfied for all θ ∈ B if only if (13) and (14)
are satisfied at all the vertices of B.

It will be shown that if the inequalities of (13)
and (14) hold, then the filter (16) ensures that
the conditions (6) and (7) of Lemma 1 are satisfied
with a matrix function P (θ) > 0 as in (12) and
W (θ) which depends affinely on θ.

Initially, it will be shown that the matrices S, Y
and Z are nonsingular. To this end, pre- and post-
multiplying (13) by [ εI −I 0 ] and its transpose,
respectively, it results that

ΨM +ΨT
M =

[

Z+ZT Y T+ ST+ Z

Y +S+ZT Y +Y T

]

>0 (18)

which implies that Z and Y are nonsingular
matrices. Further, pre- and post-multiplying the
above inequality by [ I − I ] and its transpose,
respectively, implies that S + ST < 0, and thus
S is a nonsingular matrix.

Inspired by Geromel (1999), define nonsingular
matrices U and V such that V UZT = S and
introduce the following nonsingular matrices

MT =

[

Z−T •
U •

]

, M−T =

[

Y T •
V T •

]

(19)

where the elements • are uniquely determined
from the equalities MM−1 = M−1M = I . Fur-
ther, define the following state-space realization
for the filter (16)

Af =V −1QS−1V, Bf =V −1F, Cf =RS−1V (20)

and let the nonsingular matrices

T =

[

ZT Y T

0 V T

]

, N(θ)=T −TN (θ)T −1. (21)

Pre- and post-multiplying the inequality (13) by
NT

f and Nf , respectively, where

Nf =





I2n 0

N−1(θ)ΨT
A(θ) 0

0 Inw



 (22)

leads to
[

ΨMN−1(θ)ΨT
A(θ)+ΨA(θ)N

−1(θ)ΨT
M ?

ΨT
B(θ) −I

]

< 0 (23)



Considering the matrices in (19)-(21), and per-
forming straightforward matrix manipulations, it
can be established that (23) is equivalent to

T T
a Φ Ta < 0 (24)

where Ta =diag{ T , Inw
} and

Φ=

[

MTN−1(θ)MAT
a(θ)+Aa(θ)M

TN−1(θ)M ?

BT
a(θ) −I

]

.

Hence, one concludes that (6) is satisfied with
P (θ) = MT N−1(θ)M .

On the other hand, by Schur’s complements (14)
is equivalent to

W (θ) − ΨC(θ)N−1(θ)ΨT
C(θ) > 0. (25)

Considering the definition of T , M and Ca(θ), it
can be readily verified that ΨC(θ) = Ca(θ)MT T .
Therefore, (25) holds if and only if

W (θ) − Ca(θ)MT N−1(θ)MCT
a (θ) > 0 (26)

which is equivalent to the inequality (7) with
P (θ) = MT N−1(θ)M .

Finally, by Lemma 1 one concludes that for all
θ ∈ B, the estimation error system (4) is asymp-
totically stable and

E(eTe) < sup
θ∈B

Tr [W (θ)] < max
i=1,...,`

Tr [ Wi ] (27)

∇∇∇

Theorem 1 provides an LMI method for the design
of a robust H2 filter for the uncertain system (1)
using an affine parameter-dependent Lyapunov
function. Observe that the upper-bound (17) on
the asymptotic estimation error variance is also
dependent on the uncertain parameters.

Remark 1. Note that, as for a given ε > 0 the
upper-bound on the asymptotic estimation error
variance is an affine function of the LMI unknown
matrices, the filter that minimizes this upper-
bound, for a given ε > 0, can be determined via
the following convex optimization problem:

minimize µ
subject to (13) and (14), for θ at the vertices
of B, and µ − Tr [Wi] ≥ 0, i = 1, . . . , `.

Moreover, E[eT e] < µ. Observe that µ depends
on the parameter ε and thus one should find the
ε > 0 which minimizes the upper-bound µ.

It should be remarked that (13) is not jointly
convex in the LMI unknown matrices and ε.
Further, (13) fails to be satisfied for too large
values of ε. A gridding procedure seems to be the
best way to find the ε > 0 that minimizes µ. 2

It follows from the proof of Theorem 1 that this
theorem specializes to a filter design method based
on quadratic stability by constraining N (θ) to

be independent of θ, i.e. by setting Ni = N ,
i = 1, . . . , `. Further, as it will be shown in the
next lemma, the conditions of Theorem 1 with the
above constraints are necessary for (6) and (7) to
hold with a parameter-independent matrix P (θ).

Lemma 2. Consider the system (1) and suppose
that there exists an asymptotically stable fil-
ter with state-space realization (Af , Bf , Cf ) such
that the estimation error system (4) satisfies (6)
and (7) with P (θ) = Q0 and W (θ) which is affine
in θ with values W1, · · · , W` at the vertices of B.
Then the conditions of Theorem 1 hold with the
same matrix W (θ) and a sufficiently small ε > 0.

Proof. Introduce the following partitions of Q0

and Q−1

0
, where all the blocks are n×n matrices

Q0 =

[

Q1 Q2

QT
2 Q3

]

, Q−1

0
=

[

Ξ1 Ξ2

ΞT
2 Ξ3

]

. (28)

Further, without loss of generality, the matrices
Q2 and Ξ2 can be assumed to be nonsingular. In
addition, define the matrices

Z = Q−1

1
, Y = Ξ1, F = Ξ2Bf ,

S = Ξ2Q
T
2 Q−1

1
, Q = Ξ2AfQT

2 Q−1

1
, (29)

R=CfQT
2 Q−1

1
, T =

[

Q−1

1
Ξ1

0 ΞT
2

]

, N =T T Q0T

As θ belongs to a bounded polytope, it follows
from (6) and (7) that there exists a sufficiently
small scalar α > 0 such that for all θ ∈ B
[

Aa(θ)Q0+Q0A
T
a(θ)+

α

2
Aa(θ)Q0A

T
a(θ) ?

BT
a (θ) −I

]

<0,

(30)
[

W (θ) Ca(θ)Q0

Q0C
T
a (θ) Q0

]

> 0.

With the matrices F , N , Q, R, S, Y and Z as
above and ε = α, it can be established that the
left-hand side of (13) and (14), denoted by Φ1 and
Φ2, respectively, become

Φ1 = T̄ T







Q0A
T
a (θ)+Aa(θ)Q0 ? ?

αQ0A
T
a (θ) −2αQ0 ?

BT
a(θ) 0 −I






T̄ (31)

Φ2 = T̂ T

[

W (θ) Ca(θ)Q0

Q0C
T
a (θ) Q0

]

T̂ (32)

where T̄ = diag{T , T , Inw
}, T̂ = diag{Inz

, T }.

Finally, using Schur’s complements and consider-
ing (30), it can be readily established that Φ1 < 0
and Φ2 > 0, which concludes the proof. ∇∇∇

In the light of Lemma 2, the H2 filtering method
of Theorem 1 with N (θ) independent of θ and



ε > 0 sufficiently small is equivalent to an LMI
based quadratic stability approach, such as that
of Geromel (1999). Thus, it turns out that the
method of Theorem 1 is at most as conservative as
the H2 filter design approach of Geromel (1999).

The next theorem provides a “dual” filter design
approach of that of Theorem 1. This approach is
based on the inequalities (9) and (10) of Lemma 1
with a matrix P (θ) as in (12).

Theorem 2. Consider the system (1) and let B be
a polytope of admissible θ. Suppose that for some
scalar ε > 0 there exist matrices Z ∈ R

n×n, Y ∈
R

n×n, S ∈ R
n×n, F ∈ R

n×ny , R ∈ R
nz×n, Q ∈

R
n×n, and symmetric matrices Ni ∈ R

2n×2n and
Wi ∈ R

nw×nw, i = 1, ..., ` such that the following
inequalities are satisfied at all the vertices of B







ΨT
A(θ) + ΨA(θ) ? ?

ΨT
M +εΨA(θ)−N (θ) −2εN (θ) ?

ΨC(θ) 0 −I






< 0 (33)

[

W (θ) ΨT
B(θ)

ΨB(θ) N (θ)

]

> 0 (34)

where W (θ) and N (θ) are affine matrices func-
tions of θ, with values W1, . . . , Wl and N1, . . . ,Nl,
respectively, at the vertices of B and ΨA(θ),
ΨB(θ), ΨC(θ) and ΨM are as defined in (15). Then
the filter F with transfer function matrix

Gẑy(s) = RS−1(sI − QS−1)−1F (35)

ensures that the estimation error system (4) is
asymptotically stable for all θ∈B and the asymp-
totic error variance satisfies

E[eT e] < max
i=1,...,`

Tr [Wi], ∀ θ ∈ B. (36)

Proof. It is similar to the proof of Theorem 1,
except that now

MT =

[

Y T •
V T •

]

, M−T =

[

Z−T •
U •

]

(37)

and the matrix M−TT is used in lieu of T .
∇∇∇

Note that remarks similar to those related to
Theorem 1 also apply to Theorem 2.

The next result is similar to that of Lemma 2; the
proof follows along the same lines as for Lemma 2.

Lemma 3. Consider the system (1) and suppose
that there exists an asymptotically stable fil-
ter with state-space realization (Af , Bf , Cf ) such
that the estimation error system (4) satisfies (9)
and (10) with P (θ)=Q0 and W (θ) which is affine
in θ with values W1, · · · , W` at the vertices of B.
Then the conditions of Theorem 2 hold with the
same matrix W (θ) and a sufficiently small ε > 0.

It should be remarked that the filtering methods
of Theorems 1 and the 2 are not equivalent and, in
general, they provide different filters and upper-
bounds for the asymptotic variance of the estima-
tion error. In applications, both designs should be
tested and the one that provides the best result,
in terms of guaranteed H2 performance, should
be adopted. An example in the next section illus-
trates this fact.

4. EXAMPLE

Consider the following example which has been
studied in Geromel (1999) and Tuan et al. (2000)

ẋ(t) =

[

0 −1 + 0.3α
1 −0.5

]

x(t)+

[

−2 0
1 0

]

w(t)

y(t) =
[

−100 + 10β 100
]

x(t) +
[

0 1
]

w(t) (38)

z(t) =
[

1 0
]

x(t)

where α and β are bounded uncertain parameters.

Similarly to Tuan et al. (2000), the following two
cases will be considered

(a) |α| ≤ γ and |β| ≤ 1;

(b) |α| ≤ γ and β = α.

We shall address the design of a robust H2 filter
for the above system for different values of γ. Note
that as the system (38) is asymptotically stable
whenever α < 10/3, it turns out that γ should be
smaller than 10/3.

Optimum filters have been designed for the system
(38) using Theorems 1 and 2. The optimum ε
for each γ, in the sense of minimizing the upper-
bound µ on the asymptotic error variance, has
been obtained via a gridding procedure. Fig. 1
illustrates the behavior of µ obtained from Theo-
rem 1 in function of ε for the case (b) with γ =1.
In this situation, the optimum ε is 0.9 and the
corresponding minimum µ is 2.1856. Since, for this
example, the results obtained from Theorem 1 are
better than those from Theorem 2, only the former
results will be presented and will be referred to as
approach (A).

For comparison purpose, the following robust
H2 filter design methods have also been imple-
mented: (i) the approach of Tuan et al. (2000),
which is based on an affine parameter-dependent
Lyapunov function - referred to as (B); (ii) the
quadratic stability based approach of Geromel
(1999) - referred to as (Q). Fig. 2 displays the op-
timized upper-bound µ on the asymptotic estima-
tion error variance in function of γ obtained from
the three approaches as above for the case (a),
whereas Fig. 3 refers to the case (b).

As expected, it can be readily concluded from
Figs. 2 and 3 that the results for the approach



(A) are much superior than those for the quadratic
stability method. On the other hand, the approach
(A) overall gives better performance than the
approach (B) for the case (a), whereas for the
case (b) the approach (A) provides smaller upper-
bounds µ than the approach (B) for all values
of γ. Further, it should be remarked that the
approach (A) can handle larger parameter uncer-
tainty. Indeed, it turns out that the approach (Q)
is restricted to γ < 1.6, which is the admissible
uncertainty range for quadratic stability of the
system (38), whereas the approach (B) provides
solutions only for γ < 3.05. In contrast, the ap-
proach (A) can solve the problem for γ < 10/3,
i.e. as long as the system (38) is asymptotically
stable. Note that for γ ≥ 2 the approach (A)
provides significant performance improvement as
compared to the approach (B).

It should be observed that the asymptotic error
variance for a Kalman filter designed for the
nominal system of (38) with α = β = 0 and
applied to that system with α = β = 1 is 31.12,
whereas for α = β = 3 it becomes 10037.

5. CONCLUSIONS

This paper investigated the design of robust H2

filters for linear continuous time-invariant systems
with uncertain convex bounded parameters in the
matrices of the system state-space model. Two
LMI filter design methods based on parameter-
dependent Lyapunov functions have been pro-
posed that guarantee asymptotic stability and an
optimized upper-bound for the asymptotic vari-
ance of the estimation error in spite of signifi-
cant parameter uncertainty. The proposed meth-
ods have been applied to an example proposed in
the literature and exhibited superior performance
as compared to the existing techniques.
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Fig. 2. Upper-bound µ for |α| ≤ γ and |β| ≤ 1.
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Fig. 3. Upper-bound µ for |α| ≤ γ and β = α.


