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Abstract: This paper presents a method for enlarging the domain of attraction of nonlinear
model predictive control (MPC). The useful way of guaranteeing stability of nonlinear
MPC is to add a terminal constraint and a terminal cost in the optimization problem. The
terminal constraint is a positively invariant set for the system and the terminal cost is
an associated Lyapunov function. The domain of attraction of the controller depends on
the size of the terminal region and the prediction horizon. By increasing the prediction
horizon, the domain of attraction is enlarged but at expense of a greater computational
burden. A strategy to enlarge the domain of attraction of MPC without increasing the
prediction horizon is presented. The terminal constraint is replaced by a contractive
terminal constraint which is given by a sequence of control invariant sets for the system.
This strategy guarantees closed loop stability under the same assumptions.
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1. INTRODUCTION

The ease with which MPC incorporates constraints
on both the state and the input of the system has
proved very successful in the process industry and in
academia. Furthermore, a theoretical framework for
analyzing such topics as stability, robustness, optimal-
ity, etc. for nonlinear systems has recently been devel-
oped: see (Mayne, Rawlings, Rao & Scokaert 2000)
for a survey, or (Camacho & Bordons 1999) for pro-
cess industry application issues.

One of the most important results in the stability anal-
ysis of MPC is the addition of a terminal constraint
based on an invariant set (Michalska & Mayne 1993).

1 The authors acknowledge MCYT-Spain (contract QUI99-0663-
C02-01) for funding this work.

This technique improves previous terminal equality
constraint results, but requires commutation to a local
controller when the state reaches the terminal region.
This is overcome by adding a terminal cost in the func-
tional to be optimized (Chen & Allgower 1998, Mayne
et al. 2000).

The domain of attraction of the controller is the set
of states which can be steered towards the terminal
region in N steps, where N is the prediction horizon.
This paper is devoted to enlarge this region.

The size of the domain of attraction depends on the
size of the terminal region and the chosen predic-
tion horizon. Increasing both of these may yield a
bigger domain of attraction. The size of the terminal
region depends on the computed local controller, the
constraints on the system and the procedure used to
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compute it. Thus, the most used procedure to enlarge
the domain of attraction is by increasing prediction
horizon N. This leads to a greater number of decision
variables and therefore, to a greater computational ef-
fort.

In this paper, a formulation of MPC focused on en-
larging the domain of attraction without increasing the
prediction horizon is presented. The terminal region of
MPC is replaced by a sequence of contractive control
invariant sets based on it. Thus, the terminal constraint
is transformed into a contractive terminal constraint.
Consequently, the optimization problem formulation,
and hence the computational effort, is similar to the
original one. Closed loop stability is guaranteed under
the same assumptions as the original MPC controller.

The paper is organized as follows: first, some defini-
tions on invariance sets and preliminary results are
given, next the MPC technique is analyzed. In the
following section, the MPC formulation proposed is
established. Stability results are presented in the next
section and the paper finishes with some examples and
some conclusions.

2. PRELIMINARY RESULTS

2.1 System description

Consider a system described by a nonlinear invariant
discrete time model

xk�1 � f �xk�uk� (1)

where xk � IRn is the system state and uk � IRm is the
control vector at sample time k. The system is subject
to constraint on both states and control actions, and
they are given by

xk � X (2)

uk �U (3)

where X is a closed set and U a compact set, both of
them containing the origin.

2.2 Some concepts on invariant sets

This paper has evolved within the framework of in-
variance set theory and so, well established definitions
and results used in the paper are shown. See (Kerrigan
2000) for a very good compilation of definitions and
results in set invariance theory and (Blanchini 1999)
for a very comprehensive survey paper. In this paper,
Kerrigan’s notation is followed (Kerrigan 2000).

If the system is controlled by a control law uk �
h�xk� � U , the closed loop model is given by an

autonomous system model xk�1 � f �xk�h�xk��. The
state is constrained to the set Xh, where

Xh � �xk � X�h�xk� �U�

Definition 1. Let Ω � IRn ,the one-step setof Ω,
Q�Ω� associated to a system (1) subject to (3), is given
by: �x� IRn : �u�U � f �x�u� �Ω�. That is, the set of
states which can be steered in one step to the set Ω by
an admissible control action.

Proposition 2.Let Ω1 and Ω2 such that Ω1 �Ω2, then
Q�Ω1��Q�Ω2�.

Definition 3. A set Ω � IRn is a positively invariant
setfor an autonomous system xk�1 � f �xk�, if for all
x�Ω, then f �x� �Ω.

Definition 4. A set Ω � IRn is a control invariant set
of a system with a model (1) subject to constraint
(3) if for all x � Ω, there exists an admissible input
u� h�x� �U such that f �x�u� �Ω.

Theorem 5.(Geometric condition for invariance)
The set Ω � IRn is a control invariant set if and only
if Ω �Q�Ω�.

Definition 6. Let Ω� IRn be a positively invariant set
for a system (1) subject to constraint (2) and (3), the
i-step stabilizable set Si�X�Ω� is given by

�x0 � IRn��uk �U�k� 0� 	 	 	 � i
1�

xk � X� xi �Ω� k� 0� 	 	 	 � i
1�

That is, the set of feasible states which can be steered
to the invariant set Ω in i steps by a sequence of
admissible control actions.

Proposition 7.Let us consider S0�X�Ω� � Ω � X,
then the i-step stabilizable set satisfies the following
propositions

(1) Si�1�X�Ω� � Q�Si�X�Ω���X.
(2) Si�X�Ω�� Si�1�X�Ω�
(3) If there is an integer i� such that Si�X�Ω� �

Si�1�X�Ω� �i 
 i�, then the i-step stabilizable set
is finitely determined, and Si��X�Ω� �S∞�X�Ω�.

(4) If xk �Si�X�Ω� then an admissible control action
uk �U exists such that xk�1 � Si�1�X�Ω�.

(5) Si�X�Ω� is a control invariant set.
(6) S∞�X�Ω� is the set of states which can be steered

to the invariant set Ω by an admissible control
law.

3. THE MPC TECHNIQUE

MPC controller are well established control strategy
capable of obtaining an optimal control law consid-
ering constraints on tha state and on the control ac-
tions. Moreover, under mild assumptions, it is possible



to guarantee closed loop asymptotic stability (Mayne
et al. 2000). The control law KMPC�xk� is obtained
by solving a constrained optimization problem and
applying it to the system in a receding horizon way.
The finite horizon nominal MPC optimization prob-
lem with terminal cost and terminal constraint is the
most general way of formulating the MPC controller.
This problem is stated as follows:

MPC optimization problem:

min
uF

JN�xk�uF� �

N�1

∑
i�0

L�x�k� i�k��u�k� i�k���F�x�k�N�k��

subject to:

x�k� i�k� � X i � 0� 	 	 	 �N
u�k� i�k� �U i � 0� 	 	 	 �N
1
x�k�N�k� �Ω

(4)

where the decision variables are

uF�k� � �u�k�k��u�k�1�k�� 	 	 	 �u�k�N
1�k��

and x�k� i�k� denotes the predicted state using the
nominal model, i.e.

x�k� i�1�k� � f �x�k� i�k��u�k� i�k��

for i � 0� 	 	 	 �N
1, where x�k�k� � xk.

Taking into account that the optimal minimizer u�F�xk�
depends only on xk and the receding horizon policy,
the control law is given by uk � KMPC�xk� � u��k�k�.
This control law asymptotically stabilizes the system
under the following assumptions:

Theorem 8.(Asymptotic stability of MPC (Mayne
et al. 2000))

(A1) Let uk � h�xk� be a control law such that Ω� Xh

is a positively invariant set for the closed loop
system.

(A2) Let F�x� be a Lyapunov function associated to
the system in Ω, such that for all xk �Ω,

F� f �xk�h�xk��
F�xk��
L�xk�h�xk��

then, the MPC control law stabilizes asymptotically
the system.

Under these assumptions, the optimal cost function
J�N�xk� is a Lyapunov function of the closed loop sys-
tem and the domain of attraction of the controller XN
is the set where the optimization problem is feasi-
ble. Note that this is the N-step stabilizable set XN �
SN�X�Ω�.

3.1 Enlarging MPC domain of attraction

The domain of attraction XN can be enlarged by in-
creasing the prediction horizon or by enlarging the

size of the terminal region Ω. The first way enlarges
XN since a grater prediction horizon N1 � N2 yields to
SN2

�X�Ω��SN1
�X�Ω�. However, note that if Si�X�Ω�

is finitely determined with determinedness index i �,
for N � i� the domain of attraction is not enlarged. A
drawback of this procedure is that it yields a greater
computational burden because the number of decision
variables of the NLP problem is greater and hence, it
requires more computation time , which is limited by
the sampling time.

Another way of enlarging the domain of attraction
is by obtaining a bigger terminal invariant set, since
Ω1 � Ω2 leads to Si�X�Ω1� � Si�X�Ω2�. This is
achieved in (Magni, Nicolao, Magnani & Scattolini
2001) by considering a different horizon for predic-
tion Np and for control Nc, in such a way that the
local controller is applied as the control action until
the prediction horizon. The domain of attraction is
SNc

�X�ΦNp�Nc
� where ΦNp�Nc

is the set of states of
the system controlled by the local controller with an
admissible action which reach the set Ω in Np
Nc

steps. Since Ω � ΦNp�Nc
, the domain of attraction is

enlarged.

This paper follows the last approach, but from a dif-
ferent point of view of the one presented in (Magni
et al. 2001). The invariant set is replaced by a control
invariant set, which is bigger than the positively invari-
ant set computed by using the local controller. Notice
that no more computation is necessary for solving the
optimization problem, so that the prediction horizon
is not increased. The only computational burden is
carried out off line to calculate a bigger invariant set.

4. MPC BASED ON INVARIANT SETS

The proposed MPC controller is similar to the stan-
dard one, but a contractive terminal constraint is added
to the MPC problem. This constraint is based on a
sequence of nested sets which is computed by using
invariant set theory.

4.1 Obtaining a contractive sequence of control invari-
ant sets.

Proposition 9.Let a system given by (1) be subject
to (2), and (3), let Ω be a control invariant set and let
Φ� IRn be a set such that

Ω �Φ�Q�Ω��X

then Φ is a control invariant set and for all xk � Φ,
there is a uk�xk� �U , such that f �xk�uk� �Ω

Based on this property, it is possible to obtain a con-
tractive sequence of Nr control invariant sets. This is
based on the computation of the one step set Q�	�



which is, in general, a difficult task, especially when
the system is nonlinear. Then, this operation can be
replaced by an approximation to it, Qap�	�.

Given a positively invariant set of system Ω, the com-
putation of a contractive sequence of control invariant
sets may be done using the following algorithm:

(1) Make Ω0 � Ω and i � 0
(2) Compute Ωi � Qap�Ωi�1��X �Ωi�1
(3) If i � Nr , go to 5
(4) Else, make i � i�1 and go to 2
(5) End

The set obtained by Qap�Ωi�1� must be accurate
enough to find a solution to step 2 in the algorithm,
that is, the obtained set must contain Ω i�1.

Remark 10.Set Ωi computed by the above algorithm
verifies that Ωi � Si�X�Ω�. In fact, if Qap�	� � Q�	�,
then Ωi � Si�X�Ω�.

The sequence of control invariant sets obtained can be
finitely determined. That is, there may be a i � 
 0 such
that Ωi � Ωi�1 �i 
 i�. This can be a consequence
of the fact that Si�X�Ω� is finitely determined or due
to the approximate calculation Qap�	�. In this case,
Ω∞ � Ωi� .

The computation of Q�	� or Qap�	� is the key for
the proposed algorithm and it is an open issue in
academia. Note that the computation of the contractive
sequence is carried out off line.

If the system is linear or piecewise linear, there are
efficient numerical algorithms to compute it accu-
rately. See (Blanchini 1999) for linear systems and
(Kerrigan 2000) for both, linear and piecewise linear
systems.

If the system is nonlinear, an inner politopic approx-
imation to each control invariant set can be used as a
procedure to compute Qap�	�. Let us denote a politope
as P�A�b� � �x : A	x� b� where the dimension of x
is derived from the context. Let us consider that the
constraint sets given by (2) and (3) are politopes, i.e
X � P�Ax�bx� and U � P�Au�bu�. Let Ω be control
invariant set and let Ωp � P�C�d� an inner politope of
Ω, i.e Ωp � Ω, then the one-step set Q�Ωp� is given
by next inequality

�
C 0
0 Au

�
	

�
f �x�u�

u

�
�

�
C 0
0 Au

�
	F�z��

�
d
bu

�

This region Q�P�C�d�� is a nonlinear map of a poli-
tope in the extended state space z� �x�u�. In order
to use it to implement the algorithm, it is neces-
sary to compute an inner politope of this region, i.e.
P�Rz� rz� � Q�P�C�d��. This is a difficult task since
Q�P�C�d�� is non-convex in general.

Given that the obtained politope P�Rz� rz� is in the
extended state space, it must be projected onto the

x coordinates. It can be done by efficient algorithms
such as Fourier-Motzkin elimination. It yields another
politope P�Rx� rx�� IRn. Notice that

P�Rx� rx��Q�P�C�d���Q�Ω�

The condition Ω � P�Rx� rx� must be checked. In this
case, the politope given by the intersection P�Rx� rx��
P�Ax�bx� is a control invariant set.

It is worth to remark that this procedure is under
research by the authors.

4.2 MPC with contractive terminal constraint

Let us consider a system given by (1), subject to con-
straint on states (2) and on control actions (2). Under
the assumption that a contractive sequence �Ω i� of Nr

control invariant sets exists, it is possible to establish
the following optimization problem

MPC optimization problem with contractive termi-
nal constraint

min
uF

JN�xk�uF� �

N�1

∑
i�0

L�x�k� i�k��u�k� i�k���F�x�k�N�k��

subject to:
x�k� i�k� � X i � 0� 	 	 	 �N (5)

u�k� i�k� �U i � 0� 	 	 	 �N
1 (6)�
x�k�N�k� �ΩNr�k i f k � Nr
x�k�N�k� �Ω i f k
 Nr

(7)

where x�k� i�k� is the predicted state using the nom-
inal model, i.e. x�k� i � 1�k� � f �x�k� i�k��u�k�
i�k�� i � 0� 	 	 	 �N
 1, with x�k�k� � xk. Notice that
this problem is similar to the standard formulation, but
substituting the terminal constraint by the contractive
constraint (7). Then, the computational burden is sim-
ilar, and it can be solved on line with similar com-
putation time. The main computation required is the
calculation of the contractive sequence �Ω i�, which is
done off line.

Proposition 11.Let �Ωi� be a contractive sequence
of control invariant sets calculated by the proposed
algorithm. Then SN�1�X�Ωi�� SN�X�Ωi�1�.

Proof: The computed sequence satisfies that

Ωi �Q�X�Ωi�1��X � S1�X�Ωi�1�

then SN�1�X�Ωi� � SN�1�X�S1�X�Ωi�1��. Consider-
ing that

SN�1�X�S1�X�Ωi�1�� � SN�X�Ωi�1�

the proof is completed.



Theorem 12.(Stability of MPC with contractive ter-
minal constraint)

Let a system given by (1) be subject to constraint
on state (2) and on control actions (3). Let Ω be a
positively invariant set of the system and let F�x�
be an associated Lyapunov function such that the
assumptions of theorem 8 are satisfied. Let �Ω i� be
a contractive sequence of Nr control invariant sets
with Ω0 �Ω. Then the system controlled by the MPC
with constractive terminal constraint is asymptotically
stable, with a domain of attraction Xc

N � SN�X�ΩNr
�.

Proof:

For k � Nr : This is proved by induction. Let us con-
sider x0 � Xc

N � SN�X�ΩNr
�, then a sequence of N

control actions exists which steers the state to ΩNr
and then the problem is feasible. Furthermore, given
that no mismatches exists between the nominal and
the real system, x1 � SN�1�X�ΩNr�. From property
11 it follows that x1 � SN�X�ΩNr�1�, and hence, the
optimization problem is feasible in this state.

Let us consider xk � SN�X�ΩNr�k�, then there is a
sequence of N control actions which steers the state
to ΩNr�k. Thus the problem is feasible and xk�1 �
SN�1�X�ΩNr�k�. Taking into account property 11, it
yields xk�1 � SN�X�ΩNr�k�1�, and hence, the opti-
mization problem is feasible in this state.

Consequently, the system evolves towards SN�X�Ω�
asymptotically and at k � Nr , xk � SN�X�Ω�. More-
over, the optimization problem is feasible all the time.

For k 
 Nr : The optimization problem is the same
as the original MPC and, since the assumptions of
theorem 8 are satisfied, the system evolves to the
origin asymptotically.

Corollary 13. The control law obtained by subop-
timal solution of the MPC optimization algorithm
asymptotically stabilizes the system under the as-
sumptions proposed by Scokaert et al. in (Scokaert,
Mayne & Rawlings. 1999).

Since the convergence of the closed loop system is
based on the feasibility of the optimization problem
for k � Nr , the suboptimal approach also assures the
convergence.

Corollary 14. If Ω�ΩNr
and prediction horizon N is

lower than the determinedness index of the sequence
Si�X�Ω�, then the domain of attraction of the proposed
controller Xc

N is greater than that of the MPC XN.

Proof:

Since ΩNr
�Ω and N� i�, where i� is the determined-

ness index, then

SN�X�Ω�� SN�X�ΩNr
�� SN�Nr

�X�Ω�

and therefore, XN � Xc
N.

If N 
 i� then SN�X�Ω� � SN�Nr
�X�Ω� � S∞�X�Ω�

and hence XN � Xc
N � S∞�X�Ω�.

Remark 15.If Qap�	� � Q�	�, then the domain of at-
traction of the proposed controller is X c

N �SNr�N�X�Ω�.
Thus, it is equivalent to the domain of attraction of the
MPC with a prediction horizon N�Nr .

This controller can be used to reduce the number of
decision variables in the MPC problem maintaining
the size of the domain of attraction.

A drawback of the proposed controller is that for
k � Nr the performance of the closed loop system
may be worse than the one of the original MPC since
the terminal cost can not be considered as an upper
bound of the cost-to-go outside the terminal region Ω.
Anyway this property is recovered for k
 Nr .

5. EXAMPLES

Example 1:

Let a second order unstable linear system given by
xk�1 � A	xk�B	uk where

A�

�
1�2775 
1�3499

1�0 0�0

�
B�

�
1�0
0�0

�

the constraints are �x�∞ � 5, �u�� 1. The cost is given
by L�x�u� � �x�2��u�2.

The system controlled by an LQR control law pro-
vides a positively invariant set Ω (see Fig.1). In it,
the contractive sequence of Nr � 5 control invari-
ant sets has been calculated accurately thanks to
the Invariant Set Toolbox developed by Kerrigan in
(Kerrigan 2000). In Fig.1 the domain of attraction of
the proposed MPC Xc

N and the standard MPC XN are
depicted by a solid line. The prediction horizon chosen
is N � 3. In this figure the trajectories of the states
of the system are plotted. As it can be seen, the state
evolves to the invariant sets.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x2

X
N
c  

X
N

Ω

Fig. 1. Evolution of the system of example 1



Example 2:

Consider the system used in (Chen & Allgower 1998)
described by

ẋ1 � x2 �u	�µ ��1
µ�	x1�

ẋ2 � x1�u	�µ
4	�1
µ�	x2�

where the parameter µ is 0�5. The input is constrained
to �u� � 2. The sampling time used is 0�1 time-units.
The stage cost is given by L�x�u� � �x�2

Q � �u�2
R,

where

Q�

�
0�5 0
0 0�5

�
R� 1�0

The system is locally asymptotically stabilized by a
linear controller with and associated Lyapunov func-
tion V�x� � xt 	P	x, where

P�

�
16�5926 11�5926
11�5926 16�5926

�

A positively invariant set is Ω � �x � IR2 : V�x� �
0�7�. Since both of them satisfies the assumptions of
theorem 8, they are used as terminal cost and terminal
constraint which guarantees asymptotic stability of the
closed loop system.

By using an inner politopic approximation of the
invariant sets, a sequence of three control invariant sets
have been computed. These are shown in Fig. 2.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

x
1

x 2

Ω 

Ω
1
 

Ω
2
 

Ω
3

Fig. 2. A sequence of control invariant set for the
system of example 2

The proposed MPC technique has been applied to
the system with a prediction horizon of N � 10. The
closed loop state portrait is shown in 3. All the tra-
jectories depicted are not stabilizable by the MPC
without contractive terminal constraint with the same
prediction horizon.

6. CONCLUSIONS

In this paper a formulation of MPC aimed at getting
a greater domain of attraction without increasing the
prediction horizon is presented. It is based on substi-
tuting the terminal region by a contractive sequence

−1.5 −1 −0.5 0 0.5 1 1.5
−1.2

−0.7

−0.2

0.3

0.8

x
1

x 2

Fig. 3. Evolution of the system of example 2

of control invariant sets, and hence, the terminal con-
straint by a contractive terminal constraint. This se-
quence may be computed by a proposed algorithm
based on the calculation of the one-step set in an
approximate way. The proposed controller stabilizes
the system under the same assumptions as the MPC
with terminal constraint.

The computation of the contractive sequence of con-
trol invariant sets is necessary for the proposed for-
mulation. The key is the computation of the one-step
set. This is solved for linear systems, but for nonlinear
ones further research is currently being carried out by
the authors.
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