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Abstract: This paper studies optimal tracking and regulation control problems by two-
parameter controllers, in which objective functions of tracking error and regulated
response, defined by integral square measures, are to be minimized jointly with
the control effort, where the latter is measured by the plant input energy. The
approach here is similar to our recent study for one-parameter controller case, and the
problems are solved explicitly by deriving analytical expressions for the best achievable
performance. Besides the plant non-minimum phase zeros, time delays, and unstable
poles, the results reveal and quantify how the gain characteristics of the plant may
all affect the performance. These effects are nonexistent when the control effort is not

taken into account.
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1. INTRODUCTION

In recent years there has been growing attention
devoted to the studies of intrinsic performance
limits achievable by feedback control (see, e.g.,
(Seron, Braslavsky and Goodwin, 1997; Chen,
2000) and the references therein). Two of the well-
studied problems are the optimal reference track-
ing and optimal regulation problems (Qiu and
Davison, 1993; Chen, Toker and Qiu, 2000; Seron,
et.al., 1999; Qiu and Chen, 1998). It has been
known that the minimal tracking error depends
upon the non-minimum phase zeros and time de-
lays in the plant, while the minimal regulation
energy depends upon the plant unstable poles.

It should be recognized that the performance
criteria as alluded to above are highly idealistic,
and thus serve more appropriately as an ideal,

theoretical bound. Indeed, for example in the
optimal tracking problems, in order to attain the
minimal tracking error, the input to the plant is
often required to have an infinite energy. This,
of course, is seldom possible in practice. The
consideration leads us to study the best achievable
performances when only finite input energy is
available.

Our primary motivation in this work is twofold.
First, not only are the problems practically more
relevant and generically more meaningful, but
they in fact find rather pertinent applications in
the design of mechanical systems (Hara and Naito,
1998; Iwasaki, Hara and Yamauchi, 2000). Next,
our investigation is also driven by a deeper goal,
in hope of discovering control constraints and
limitations imposed by other sources than non-
minimum phase zeros, unstable poles, and time



delays. We maintain that this concern may re-
ceive an answer only when more practical perfor-
mance goals are taken into consideration, specifi-
cally when conflicting design objectives are to be
considered jointly.

Along this direction, the authors investigated an
optimal tracking control problem in which not
only the step error response, but also the plant
input energy, both quantified under a square-
integral or an H, measure, is penalized (Chen,
Hara and Chen, 2001). The aim was not to give
a numerical solution but to provide explicit ana-
lytical expressions for the best achievable perfor-
mance. The results demonstrated in all cases how
the best achievable performance may depend on
the plant gain in the entire frequency range, and
in particular help explain how the bandwidth, the
lightly damped poles and the anti-resonant zeros
of the plant may limit the achievable performance.
The results thus unraveled and quantified ana-
lytically yet another source of intrinsic feedback
constraints, which may not be observed in the
“single-objective” control design problems, such
as the standard tracking and regulation problems,
the Bode and Poisson integrals, and the standard
sensitivity and complementary sensitivity mini-
mization problems.

However, the development has been restricted to
tracking and regulation using a one-parameter
controller, for marginally stable and minimum
phase plants respectively. This paper studies more
general plants which may be both unstable and
non-minimum phase. It is known that a two-
parameter control structure is superior when
tracking or regulation constitutes the sole design
objective, specifically in countering the effect of
plant unstable poles on tracking, and that of plant
non-minimum phase zeros on regulation (Chen,
Toker and Qiu, 2000; Qiu and Chen, 1998). The
purpose of this paper is to investigate whether
it will also improve tracking and regulation per-
formance when control effort is taken into con-
sideration, and whether it may offer any advan-
tage in circumventing the performance constraints
imposed by the plant gain when we use two-
parameter controllers.

Section 2 and Section 3 are respectively devoted to
the tracking and regulation problems, where the
same analytical expressions as in the correspond-
ing one-parameter cases are presented for the best
achievable control performance under reasonable
mild assumptions of the plant. A closed form
solution for a related constraint problem is also
shown. The highlight of the paper is in Section
4. We will consider a joint performance objective,
where tracking to reference input and regulation
to disturbance input are simultaneously imposed.
Surprisingly, we can get an analytical expression

for the best achievable performance. All the proofs
of the results in this paper are omitted due to the
page limitation.

Notation: Denote the open right half plane
by C4. For any complex number z, denote its
complex conjugate by Z. For any signal wu(¢),
we denote its Laplace transform by u(s). The
transpose and conjugate transpose of a matrix A
are denoted by AT and AH | its largest singular
values by 7(A4), and its smallest eigenvalue by
A(A). For a pair of nonzero vectors w and v, we
define the principal angle Z(w, v) between their
directions by cos Z(w, v) := |wHv|/(||w]|]v]])-
Moreover, let || - || denote the Euclidean vector
norm. and the £, norm is defined as

= (& [ o)

2. OPTIMAL TRACKING PERFORMANCE

2.1 Problem Formulation

We consider a feedback system with two-parameter
controller shown in Figure 1, where the control
input u accesses the reference input r and the
output y via two separately designed controllers
K, and K, by

u=Kir+ K.

For the plant transfer function matrix P, let its
right and left coprime factorizations be given by

P=NM"1'=M"'N, (1)

where N, M, N, M € RHo and satisfy the
double Bezout identity for some X, Y, X, Y €

RH oo, ) .
X Y| (MY
[_N MHNx]—I- @
Then the set of all stabilizing two-parameter com-
pensators is characterized by (Vidyasagar, 1985)
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Fig. 1. Two-parameter tracker



The reference input r is assumed to be a step type
function which is represented by

v t>0; v[|=1
o= {y 20 I

4
t<0 ’ (4)
where the unitary vector v specifies the input
direction. We adopt the integral square criterion
(for0<e<1)

w=u—a£mmw—mmmﬁ
+€A lu(t) [2dt, (5)

as our performance measure. Here, € may be
used to weight the relative importance of tracking
objective versus that of constraining the input
energy. For any given r, we want to determine the
optimal performance achievable by all stabilizing
two-parameter compensators,
J* = inf J.

KeK2
In the limiting case, when € = 0, J* defines the
minimal tracking error with no regard to input
energy (Chen, Toker and Qiu, 2000). For € = 1, it
reduces to an optimal energy regulation problem
(Qiu and Chen, 1998).

Via a routine manipulation, it is easy to find that
¥ = NQr and u = MQ7r. Hence, the tracking
performance measure can be written as

J=(1-¢l( NQ)A||2+€||MQAI|2

Y]

-1
VeMQ
Hence, the optimal performance becomes

J*:= inf J= inf J.
KeKo QERH o
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It should be emphasized that our purpose here is
not to give a numerical solution for the problem
but to provide explicit analytical expressions for
the best achievable performance J*, because the
problem is an s optimal control problem and
hence it can be solved numerically using the well
known Riccati or LMI solution.

2.2 Main Results

In order to derive the main results, the following
assumptions are enforced.

Assumption 1: P(s) is right-invertible and it has
no zero at s = 0.

Assumption 2: P(s) has a pole at s = 0.

We note that while Assumption 1 is standard
in step reference tracking problems, it is clear
from (5) that to maintain a finite energy cost
precludes the possibility that K,(s) may have an
integrator. Instead, the plant P(s) may have non-
minimum phase zeros. For a right-invertible P(s),
it is well-known (see, e.g., (Seron, Braslavsky and
Goodwin, 1997)) that each of its non-minimum
phase zeros is also one for N(s). Let z; € Cg,
1=1, , N., be the non-minimum phase zeros
of P(s). It is possible to factorize N(s) as

Zi % — S o
wzrs | | ] ©
0 I i

where N,,(s) represents the minimum phase part
of N(s), n; is the direction vector associated with
zi, and the columns of U; forms a unitary matrix
together with 7;.

Note also that Assumption 2 is required to keep
the second term of J finite and it can be met
in many cases of interest (e.g., mechanical sys-
tems (Hara and Naito, 1998; Iwasaki, Hara and
Yamauchi, 2000)), where the plant contains inte-
grators.

We need to introduce several functions before
showing the main results. We first perform an
inner-outer factorization

[ V1—eNp,
VeM

where 0;,0, € RH, are inner and outer matrix
functions, respectively. Then define

f(5) := (1 = €)v" Niu(5)0,(5)0, T (0)Npy, (0)v (8)
and factorize f(s) as

f@=<ﬁ%&¢5)mu

where s; are the non-minimum phase zeros of f(s)
and f,,(s) is minimum phase.
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Theorem 1 Under Assumption 1-2, let z; € C,
i=1, , N, be the zeros of P(s), which admit
the decomposition (6). Then, the best achievable
performance is given as follows:

1) SISO system:

N-

1
Tr=21-0Y =
Zj
=1
1—€ 1 €
! 1
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2) MIMO system:

N
31
J*=2(1-¢) Z — cos? Z(n;, v)
i—1
N. 4
+21-6)) —+ s, (10)
i=1 "
where
2(1 — & )
g, =X 6)/ 1°g|fgjw)|dw. (11)
m 0 W
Furthermore,
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Theorem 1 demonstrates that unlike in the stan-
dard tracking problem, the optimal performance
herein also depends on the minimum phase part
of the plant. This effect is captured by the the
second term in (9) and the second and the third
terms in (10), which are all nonnegative. The re-
sult is exactly same as that for the one-parameter
controller case in (Chen, Hara and Chen, 2001),
where the plant is assumed to have no unstable
poles except at s = 0. The advantage of using
two-parameter controller is to remove such an
assumption. Assumptions 1 and 2 correspond to
the necessary condition for the problem having
a finite optimal value, and hence they are not re-
strictive. Consequently, Theorem 1 really provides
a fundamental tracking performance limitation in
practice.

Next, we will consider a constraint optimiza-
tion problem instead of unconstraint optimization
problem with performance index (5). The problem
is defined as follows:

K(S) eXa

inf el = [ leto)Par
oo

subjectto [l = [ Ju(o)lde < .
0

and the optimal cost is denoted by J*(7,).

We can derive a closed form solution of the prob-
lem for SISO plants using Theorem 1.

Theorem 2  Consider a SISO plant P(s) and
let a positive number v,, < -y be given, where

T / Tl (12)
Wy wPGw)E
Then, under Assumption 1-2,

N, 1
J;(’Yu) = 22 o a*yy
i=1 "

1 /1 a*
— —1 1+ — Jdw.(1
+w/0 o Og( +|P<jw)|2) w-(13)

where a* is the unique positive solution of

® 1 1
e dw =T, 14
/0 2 a PG W= (14)

Moreover,
N-
Jé"(%)ZJZ(V*)ZQZ; y T > e (15)
i=1 "

There has been no analytical expression for the
solution, and hence Theorem 2 is quite new. Since
a* only depends on the gain of the plant, we can
see a nice separation property in the expression
of J¥(7yy). The first term caused by non-minimum
phase zeros of the plant is irrelevant to the choice
of v, while the extra two terms are completely
determined by |P(jw)| and 7.

3. OPTIMAL REGULATION
PERFORMANCE

In this section we formulate and solve an output
regulation problem under finite control effort con-
straint. To this end, we consider a general two-
parameter control scheme as depicted in Figure
2, where the control input u is generated by pro-
cessing on the output y and the disturbance d,
yielding
o= Kid+ K.

Here we take d to be the impulse signal

d(t) = ¢o(t) 5 i<l =1, 1)

where ( is a constant unitary vector, which may
be interpreted either as a nonzero initial condition
of the system or more generally as a disturbance
signal entering at the plant input.

[Ky Ky ] —%0O P Y

Fig. 2. Two-parameter regulator

The problem of interest is to regulate the zero-
input response y to zero, by the design of the
compensator K = [K1, K»]. We adopt the integral
square energy criterion

Ei=(1-¢ /Ooo||y(t)||2dt+e/ooo||u(t)||2dt. @)

With the controller parameterized by (3), the
signals y and u are found respectively as
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Let Qo := Q + X — RN € RH. The regulation
performance objective can then be expressed as

—eNQo ] A‘

E=(1- +ellu d
-+l = ||| G

The best attainable performance then given by

E*:= inf E= inf E.
Keka QoERH o
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In order to derive the result for the regulation
problem, the following assumption is enforced.

Assumption 3: P(s) is left-invertible and strictly
proper.

This assumption implies that y(0) is finite, a nec-
essary condition for the output energy to be finite.
We note that such an assumption is not required
in the standard energy regulation problem (Qiu
and Chen, 1998) (e = 1) and that unstable poles
of the plant play a key role to derive the best
achievable performance.

Let P(s) have poles p; € €4+, 4 =1, ---, Np.
Note that it is always possible to factorlze M (s)
as

Np S —Di
M(s) = : Wi s+ Dp;
(s) (g[w ] Op ,
H
[ 1300, )

where M,,(s) is minimum phase, w; is the direc-
tion vector associated with p; and together with
the columns of W; forms a unitary matrix.

We now perform an inner and outer factorization

[%ﬂ — AiA,.

Then we can define
9(8) 1= (T M (5)A5H ()A; T (00) My (c0)¢ (4)
and factorize g(s) as

g9(s) = (H Z;;Z) gm(s),

i=1

where s; are the non-minimum phase zeros of g(s)
and g, (s) is minimum phase.

Those functions lead to the result for the regula-
tion problem, which is consistent with the result
for the case where a non-minimum phase plant is
controlled by a one-parameter controller.

Theorem 3 Under Assumption 3, let p; € C,,
i=1, ---, Np, be the poles of P(s), which admit

the decomposition (3). Then, the best achievable
performance is given as follows:

1) SISO system:

NP
E* :262171'
=1
o0 1 _
+ 5/ log (1 + —€|P(jw)|2) dw. (5)
v 0 €

2) MIMO system:

NP N.s
E* =2¢ Zp,- cos? Z(w;, ¢)+ 2e Z si + E,, (6)
i=1 i=1
where
2 [*° )
Eo:=—— [ log|g(jw)|dw. (7)
™ Jo
Furthermore,

B, > %/ log (1 + ?A [PH(jw)P(jw)]) dw.
0

Theorems 3 shows that the regulation perfor-
mance also hinges closely on the plant gain and
bandwidth, other than its unstable poles. How-
ever, a clear distinction exists between the track-
ing and the regulation problems. Unlike in the
tracking problem, a large plant gain is seen to be
undesirable for regulation.

4. TRACKING AND REGULATION

While two-parameter controllers do offer an dis-
tinctive advantage for tracking and regulation,
their effect is limited to only non-minimum phase
zeros, time delays, and unstable poles in the two
respective problems. Theorems 1 and 3 make it
clear that the dependence of the tracking and
regulation performance on the plant gain remains
unchanged, and so do the constraints due to
plant bandwidth, lightly damped poles, and anti-
resonant zeros. Since two-parameter controllers
constitute the most general linear feedback struc-
ture, these constraints are thus seen to pose a fun-
damental barrier to the achievable performance,
and are intrinsic of the problems which both at-
tempt to minimize conflicting design objectives.

In the final contribution of this paper, we extend
the above results to a joint performance objec-
tive that addresses reference tracking and energy
regulation in the presence of disturbance signals.
Thus, consider the two-parameter system given in
Figure 3.

We adopt the performance criterion (for 0 < € <
1)
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Fig. 3. Two-parameter tracker with disturbance

H = (l—e)/ ||y(t)—r(t)||2dt+e/
0 0
and study the optimal performance

H* .= inf H.
KeKo

o0

[lu(®)l*dt,

The problem is a so-called ”4-block Hs optimal
control problem”, where we have two exogenous
inputs, r and d, and two output signals,e=r —y
and u, to be evaluated.

Note that H* differs from J* and E*, due to
the presence of r and d simultaneously. We shall
assume that P(s) is a square invertible transfer
function matrix; this stronger assumption arises
for to track the reference signal r, the plant is
required to be right-invertible, while to counter
the disturbance signal d, it needs to be left-
invertible.

Theorem 4 Let r and d be given by (4) and
(1), respectively, and suppose that P(s) satisfies
Assumption 1-3. Also suppose that P(s) has zeros
zi € Cp, 1 =1, ---, N, and poles p; € C, ,
i=1, ---, Np, which admit the decompositions
of (6) and (3). Then, we have

H*=J +E*+ A, (8)
where
A= —2¢(1— v Ny (0)A, 1 (0)A, T (00) M T (00)¢

and A, is the outer factor in the inner-outer
factorization

The theorem clearly represents the best achievable
performance, which consists of J*, E* and a term
related to the coupling affect of two different ex-
ogenous signals r and d. Note that the extra term
A might be negative depending on the relative
direction of v and (. More investigation is needed
to have a nice physical implication of the term A.

5. CONCLUSION

In this paper we have studied Ha-type optimal
tracking and regulation control problems, which
attempt to minimize jointly the tracking error and

plant input energy, and the output response along
with input energy, respectively. The results enable
us to conclude that under finite control effort,
the best tracking and regulation performance both
depend on the plant gain in the entire frequency
range, and consequently both can be significantly
affected by the plant bandwidth. Furthermore, the
results help clarify the roles of the gain character-
istics of the plant, which have been seen to have
a direct pertinence on the performance.

The first contribution of the paper is to show the
results for the one-parameter controller case hold
even if the plant may have unstable poles and/or
zeros, The second contribution is to derive a closed
form solution for a related constraint optimization
problem: error minimization subject to control
input effort constraint. The last contribution is
to provide an analytical expression for the best
achievable joint performance of tracking and reg-
ulation. These results made the fundamental con-
trol performance limitations under control effort
constraint quite clear.
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