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Abstract: This paper is concerned with the development of a new approach for
integrated design of controlled mechanical systems. The contribution is three fold. We
first show through a typical design example that the closed-loop bandwidth achievable
with a reasonable control effort is shown to be closely related to the frequency range for
which the plant is high gain and exhibits positive-realness when high gain controllers
are not allowed. Secondly, we present matrix inequality characterizations of the robust
finite frequency positive-real property and the finite frequency high gain property.
Thirdly, we propose a systematic method for designing mechanical systems to achieve
the finite frequency properties. Then, the validity is confirmed by the smart structure

design using piezo-electric films.
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1. INTRODUCTION

This paper is concerned with finite frequency
characterization of easily controllable mechanical
systems under control effort constraint for aiming
at the development of a new approach for inte-
grated design of controlled mechanical systems.
Given a set of performance specifications, the
mechanical control system design mainly consists
of the following two steps: the mechanical struc-
ture design and the controller design. Convention-
ally, these two steps are followed sequentially; the
structure is first designed to meet requirements
involving stiffness, strength, weight, etc., which
are not directly related to the closed-loop (i.e.
controlled) dynamic performance, and a controller
is then designed for a given mechanical system.

Thus, the conventional method does not provide
optimal solutions in general, and hence there is
room for sensible design strategies to improve the
overall performance.

There are many research results along this di-
rection. Recently, the simultaneous design meth-
ods have been proposed (Kajiwara and Naga-
matsu, 1990; Sultan and Skelton, 1997; Grigo-
riadis, Zhu and Skelton, 1996; Grigoriadis and
Wu, 1997; Onoda and Haftka, 1987) via numer-
ical optimization of the parameters of both struc-
ture and controller. Although the methods may
improve the performance of a given mechanical
control system used as the initial condition of the
optimization algorithm, the resulting dynamical
system depends heavily on the initial design and



can be far from the global optimum due to the
non-convexity of the problem. To have a sensible
initial design, we have to go back to the conven-
tional sequential design. Thus we need a funda-
mental design principle that essentially eliminates
the limitations of the two-step design.

Our approach is to identify and characterize prop-
erties of mechanical systems that are critical to
achieving good controlled dynamic performance
when an appropriate feedback loop is closed. Once
we design a mechanical system with such proper-
ties, standard optimal control methods can be ap-
plied to complete the whole design process to yield
controlled mechanical systems with near optimal
performance.

It is widely accepted as a fact in a mechanical
design community that a good controlled per-
formance can be expected if a mechanical sys-
tem is designed such that the flexible modes are
“in-phase” with respect to the rigid-body mode.
There is not much theoretical justification for this
claim but empirical evidence is rather convinc-
ing (Ono and Teramoto, 1992). Our research is
initially motivated by this claim and we have
investigated implications of the in-phase property
in terms of the language of the control community.
Our aim here is to characterize easily controllable
mechanical systems and provide control perfor-
mance limitations under control effort constraint
toward a new approach for the integrated design.

The contribution of this paper is three fold. In
Section 2, we investigate the limits of a servo
tracking performance for a typical lightly damped
flexible mechanical system. This paper shows that
the closed-loop bandwidth achievable with a rea-
sonable control effort is closely related to the fre-
quency range for which the plant is high-gain and
exhibits positive-realness. In Section 3, we present
an LMI characterization of the robust finite fre-
quency positive-real (FFPR) property and ma-
trix characterization of the finite frequency high
gain property (FFHG), where those properties
hold within a finite frequency interval. Finally in
Section 4, we propose a systematic method for
designing mechanical systems to achieve the finite
frequency properties. The method is applied to a
practical applications of structure/control design
integration: a smart structure design, where a
piezo-electric film is used as an actuator to reduce
the oscillation of a single beam. The desirable
profile of piezo-electric film is systematically de-
signed to reduce the higher mode oscillation. The
validity of the proposed method is confirmed by
experiments.

We use the following notation. For a matrix A,
AT, A*, 5(A) and o(A) denote its transpose,
complex conjugate transpose, maximum singular
value and minimum singular value, respectively.

For a symmetric matrix, 4 > (>)0 and 4 < (<)0
denote positive (semi-)definiteness and negative
(semi-)definiteness.

2. CASE STUDY: WHAT LIMITS THE
CONTROL BANDWIDTH?

In this section, we consider a simple servo-tracking
control design problem and answer the following
basic question: What open-loop property limits
the closed-loop performance, in particular, the
control bandwidth?

We use the control system setup depicted in Fig. 1
where K (s) is the controller, r is the unit step
command input, y is the plant output which we
force to follow the step command, e is the tracking
error, and u is the control input. The class of
target plants is lightly damped flexible systems
expressed as

1 k1 k2

P(s) = —
(5) 52 + §2 + 2G w18 + w? + 82 + 2Qws s + w2

where ((1,w1) = (0.001, 10), (¢2,w2) = (0.001,100).
For fixed values of k1 and k-, define the optimal
‘Ho tracking performance with control level v, by

e(k1,ka,7y) := min / e(t)2dt
el ) = miny | [ e

o0
subject to / u(t)2dt < yy.
0
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Fig. 2. What limits the control bandwidth?



Fig. 2 (upper left) shows, for the four cases of
the plant parameters, the relations between 7,
and the control bandwidth of the optimal closed-
loop system where the cross-over frequency of the
open-loop transfer function K (s)P(s) is used as
an estimate of the control bandwidth. Shown to
the right is the frequency response of each plant.
From the figure, we see that:

e We have to put lots of control effort (v,)
to make the control bandwidth go over the
frequencies at which the phase or the gain of
the plant drops, and the phase drop affect is
dominant.

o If the allowable control effort is not too small
nor too large, then the control bandwidth
coincides roughly with the smallest frequency
at which the phase of the open-loop transfer
function goes below —180 [deg].

From these observations, we conclude that we
should design the mechanical system such that
its phase does not go below —180 [deg] and its
gain is larger than a certain value within the
desired control bandwidth. In other words, for
G(s) := sP(s), we should require the following
finite frequency positive-real (FFPR) property:

G(jw) + G(jw)* 20,

where w is the desired control bandwidth. For
P(s) itself, the following finite frequency high-gain
(FFHG) property

a(P(jw)) >,

is required. The importance of FFPR property has
been already pointed out by the authors (Iwasaki
and Hara, 1999), while FFHG is our new attention
here.

"wlwl <w, (1)

Yo lw| <@ (2)

3. CHARACTERIZATIONS OF FINITE
FREQUENCY PROPERTIES

3.1 Positive-real property

We first give an LMI characterization of the
FFPR condition(Iwasaki and Hara, 1999; Iwasaki,
Meinsma and Fu, 1992).

LeEMMA 1. Consider a real rational, square trans-
fer function G(s) with minimal realization C(sI —
A)"1B + D. Let a positive scalar @ be given.
Then, G(s) is FFPR with bandwidth w, if and
only if there exist real symmetric matrices Y and
X > 0 such that

G [ ] [2a]

<| g prep)- 3)

The next topic is to “robustify” the finite fre-
quency condition in Lemma 1.

Consider a linear time-invariant uncertain system

T A Bl BQ x
z = 01 D11 D12 w ) w = AZ (4)
Yy Cz D2y Do U

where all the coefficient matrices A, B;, C; and
D;; (i = 1,2) are real, and A is an uncertain
matrix belonging to a known subset of real ma-
trices A. Let the transfer function from u to y
be denoted by Ga(s). We shall give a sufficient
condition for the robust FFPR property:

Ga(jw) + Ga(jw)* >0, YweR, A€A, (5)

which is less conservative than that in (Iwasaki,
Hara and Yamauchi, 2000), where Q is defined as

Q:={weR: det(jwl — A) #0, |w| <w }.

THEOREM 1. Consider the uncertain system (4)
with A € A where A is a subset of real matrices.
Assume that Dy; = 0 and det(I — D11A) # 0
holds for all A € A. Denote by Ga(s) the transfer
function from u to y. Let a positive scalar w be
given. Then, the robust FFPR condition holds if
there exist real symmetric matrices X, Y, ® € ®,
and A € A such that

o] [ [ea]

BEY o

X > B AB] (7)

where Slron o
e (38 [ e [59) o

VFeI‘},H::[?é] )

A={A: TTAT>0, VT €T} (10)

I‘::{:AIT]:AGA} (1)

and
A 0|0 By | B
A B, By,| |Ci0IDy|Ds
C 0 Dy|" |Cy0/0 0 Dy’
L0 1[0 00
B] _[B, AB, B,
[D] =70 oB, DQ]' (12)

Conditions (6) and (7) are both LMIs in the
variables P, @, ®, and A, and hence are suitable for



numerical computation. However, constraints & €
® and A € A are characterized by infinitely many
inequalities and make the numerical verification
of robust finite frequency condition (5) difficult.
To make it tractable, inner approximations of
the sets ® and A may be used. In particular,
when A is the set of diagonal matrices with real
uncertain parameters of bounded magnitude on
the diagonal, such inner approximations can be
given by the D-G scaling (Fan, Tits and Doyle,
1991) or the LFT scaling (Asai, Hara and Iwasaki,
2000). The former results in a sufficient condition
for (5) that can be checked in polynomial time,
while the latter improves conservatism of the
former at the expense of more computation. See
(Iwasaki and Shibata, 1992) for the details.

We consider the following situation in order to
apply the above matrix inequality condition to the
structure/control design integration. If Ba, D1
and Dss, or B2 and D-, only depend affinely on
the mechanical design parameter 6, then condi-
tions (6) and (7) are LMIs in terms of X, Y, ®, A,
and 6. Therefore, the design parameter 6 can be
found efficiently The situation includes actuator
location problems (the dual situation relates to
sensor location problems). This property will be
used in the design of a swing-arm positioning
mechanism in Section 4.1.

3.2 High-gain property

This subsection is devoted to matrix inequality
characterization for finite frequency heigh-gain
(FFHG) property. We first note that the FFHG
condition (2) is equivalent to

o(P7(jw) <1/y, "wlw| <. (13)

Hence, we need to introduce the descriptor form
expression for the inverse of a square transfer
function

P(s) = Cyp(sI — Ap) "' By + Dy
which is given by

P(s) ' =P(s):=C(sE— A 'B+D

where

- o B [10
¢i=[01], D=0, E._[OO]

Using the following lemma, we can get necessary
and sufficient conditions for the FFHG.

LEMMA 2. A transfer function G (s) with descrip-
tor representation

G(s)=C(sE—A)™'B+D

and w > 0 are given. Suppose
detA\E—A) #0, "Ae C, A+A=0

holds. Then, the following two conditions are
equivalent.

i) @@GUw) <7, "w |w|<w
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THEOREM 2. Consider a real rational, square
transfer function P(s) with minimal realization
Cp(sI—A,)"1B,. Let a positive scalar w be given.
Then, P(s) is FFHG with bandwidth w, if and
only if one of the following two conditions holds.

(i) Pu =P, Pn, Q:= [Qll le] =

Qs Q22
QT>0 s.t.
(A, B, I —Qu —Q12 Pn
Cp 00| |-Qix —Qa P
L 0 I 0_ P11 P12 W2Q11
(A4, B,I1" [00 0
C, 00| +|01 0 <0 (14)
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The conditions (i) and (ii) are both LMI in terms
of variables Pj;, Pi» and @ if the plant parame-
ters Ap, B, and C), are given. Hence, the FFHG
condition can be readily checked. More over, the
maximal frequency for the plant having the FFPR
property can be computed by solving a gener-
alized eigenvalue problem. For this purpose the
condition (i) is better than the condition (ii).
However, if we want to apply the conditions to the
integrated design, then the situation is different.
Let us consider the case where B, is an affine
function of the design parameter § and A, and
C, are independent of . Neither the condition (i)



nor (ii) is an LMI, but the matrix inequality (15)
is a BMI while the matrix inequality (14) is not.
Hence, the condition (ii) is much more suitable
than the condition (i) from this point of view.

4. APPLICATION TO SMART ARM
STRUCTURE DESIGN

This section is concerned with a smart structure
design, where a piezo-electric film is used as an
actuator to reduce the oscillation of a single beam
depicted in Fig. 3. We assume that the region of
piezo-electric film is restricted to a part of the
arm illustrated in Fig. 4. If the film is attached
uniformly, the Bode plot of the transfer function
from the voltage of the piezo-electric film and the
end position measured by a gap sensor is shown
as the solid lines in Fig. 5. It is seen from Fig. 5
that the second mode is not in-phase, i.e., there
is a phase drop around at 7.5 x 10? [rad/sec].
This implies that the second mode is not easy to
control.
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Fig. 3. Single beam arm with piezo-electric film
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Fig. 4. Region of piezo-electric film
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Consequently, our design objective is to find the
desirable profile of piezo-electric film so that the
related transfer function has both FFPR and
FFHG properties within the higher frequency in-
cluding the second mode. The design parameters

are the widths of the film 64, - , 0,4 as illustrated
in Fig. 6. The design problem relates to an actua-
tor location problem, and hence B, only depends
on the parameters affinely. Therefore, the opti-
mal shape can be efficiently obtained by solving
an LMI problem if we only consider the FFPR
condition as stated in Section 3.1. The resultant
profile of the film is illustrated in the left hand
side of Fig. 7. We can see from the doted lines
of Fig. 5 that the second mode becomes in-phase,
i.e., there exists no phase drop around the second
mode.

Fig. 6. Region of piezo-electric film

We then consider another design problem of which
the specification includes both FFPR and FFHG
conditions in order to improve the control perfor-
mance. As mentioned in the remark after Theorem
2 in Section 3.2, the problem can be reduced to not
an LMI but a BMI optimization problem. There-
fore, the repeated process of solving LMI problems
leads to a local optimal solution. A local optimal
profile of the piezo-electric film for v = 1072 is
obtained as illustrated in the right hand side of
Fig. 7. We can see from the Bode plot of the
resultant transfer function (solid lines in Fig. 8)
that our design method make the plant FFPR
and the higher gain in the low frequency range
can be achieved in comparison with the former
design only based on the FFPR constraint shown
as the dotted lines in the figure. This verifies the
potential effectiveness of our approach.

The actual control performance was compared by
designing H, optimal controllers for both fIPR
and ffIPR4+fIHG cases. The results are shown in
Fig. 9. The experimental results on the impulse
responses in 10 confirmed the validity of our
design method, where the dotted line correspond-
ing to the fflPR case is worse than the solid line
corresponding to the ffPR+ffHG case.
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Fig. 7. Designed profiles of the film
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5. CONCLUSION

We have shown by a servo-tracking example that
certain open-loop properties — FFPR and FFHG
— are critical for achieving good closed-loop per-
formance by an optimal #s controller. Then the
robust FFPR property and the FFHG property
have been characterized in terms of matrix in-
equalities. Finally, we have applied integrated de-
sign methods based on the matrix inequalities
to the design of the profile of piezo-electric film
for a smart structure to demonstrate applicability
of our approach. The experiments confirmed the
validity.
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