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Abstract: A robust adaptation scheme for the delay of a continuous-time chaos control
with half-period delayed feedback is presented. The phase-difference between the
measured signal and the delayed measurement control is detected to adjust the delay to its
optimum. The method when applied to the Lorenz and the Duffing oscillator shows high
robustnessCopyright © 2002 IFAC
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1. INTRODUCTION difference of an output measurement of the chaotic
system and, respectively, the delayed measurement

Within many physical systems, chaotic behaviour isfor control. The control signal vanishes in the post-
undesirable. Nevertheless, regulation of physicaltransient behaviour for the stabilized orbit. Thus, the
systems by changing some parameters to a largeelay time has to be the exact value of the period of
extent is often also undesirable. Thus, the control ofthe unstable intrinsic orbit. However, Nakajima
chaotic behaviour by small parameter variations has(1997) and Justel. al., (1997) proved a practical
been of common practical and theoretical interest forlimitation of this continuous control method: a
many years. In practical examples, such as lasehyperbolic unstable periodic orbit with an odd
systems (Ottet. al., 1994 ) or aircraft engine  number of real characteristic multipliers greater than
combustion systems (Chen, 1999), it has beenunity can never be stabilised by the delay control
important to control chaotic oscillations to improve method introduced by Pyragas (1992). A
system efficiency. Several texts (Boccaletti, al., modification of Pyragas' (1992) control method
2000) are available reviewing methods for control of suggested by Nakajima (1998) has resolved this
chaotic dynamics.  Methods for stabilisation of problem and was successfully demonstrated for the
intrinsic unstable periodic orbits within chaotic Duffing equation and the chaotic Lorenz system.
systems via small parameter perturbation can beprovided the solutionx.. (t) of the unstable
divided into two classes, continuous and discrete ad
control methods. Discrete control methods such agPeriodic orbit with period Tpe is  symmetric,
the OGY-technique (Oftet. al., 1990) generally — y  (t)=-x __ (t-T,y /2), then the control signal
reside on an on-line Poincare cut analysis and a~ " —per per e
respective identification of a model for control, is chosen to be proportional t&(t) + X(t —Tcon)
which, for noisy measurements in particular, can beinyolving a half-period delafloon =Tper /2 for the
very complex. Continuous-time control methods do .
not suffer from this problem since they are generally d€layed state vectox(t—Teon) . For a stabilised
not model-based and do not demand an on-line dat®rbit, this signal becomes zero provided the
analysis. One particular continuous control employed delay is exactly adjusted. Nevertheless,
technique, developed by Pyragas (1992) involving athis delay is not known a-priori. Recently, a
delayed feedback, has attracted longstanding interestontinuous-time methodology (Herrmann, 2001) has
and has proven to be very useful in application tobeen suggested which complements and improves
practical systems (Chen, 1999; Celka, 1994; Holyst,currently used techniques for delay adaptation (Chen,
et.al., 2000; Kittel, 1995; Pyragas, 1992; Pyragas, €t a., 1999, Pyragast. al., 1993; Kittel, et. al.,
al., 1993; Pyragas, 1995; Schoedt. al., 1993; 1995; Yu, 1999). These iterative schemes rely on the
Schoell,et. al., 1994). This control method uses a analysis of time-sampled data  from output
delayed feedback employing a suitably amplified measurements of the chaotic system. Hence, these



technigues can provide good results if the matRO)o0  (3)
measurements are not noisy. The continuous-time t(Fz(t))E
adaptation method introduced by Herrmann (2001) ANy + SAT(FQ), SATFM)=5 " 7'
complements these existing schemes by using a %at(pm(t))g
guess for the period length of the orbit and evades

the issue of discrete-time, on-line data analysis OFg;  for Fi(t) > Fy,

during the actual control process; it is therefore more sat(F; (t)) =0 F;(t) elsewhere:

robust to measurement noise. This technique :

employs a non-linear filter known from phase- %Foi for Fi (1) < Fo,
locked loops (Blake, 1993) and incorporates a |:(t):}<[qxi (t—Teon) + X; (t)), Kogm™n,
proportional-integral control (Pl-control). Initially,

the good guess of the period length can be taken T
from an output data analysis by identifying the
unstable orbits and the respective period length for
the unperturbed chaotic system (Auerbach, 1987:The perturbation around the val@, has not only
Lathrop, 1989) or subsequently from discrete control been limited by a saturation function to keep the

;ncgldeﬁ;yggdagart;or;;sﬁts gggalé??e? (éthe;l’ dynamical characteristics as close as possible to the
1995'_’ Yu 1’999;/ I-?owe.ver., Herrrr,lann (’200'1) .has original system’s behaviour but also to prevent
L j ' ractically the problem of multi-stabilities (Pyragas,

demonstrate_d that a highly accurate guess for .th§992). It has been found for suitable examples that
period duration is not necessary. To show the wide B . :
for Teon =Tper /2 and for appropriate gailk the

applicability of the suggested approach, the

continuous techniqulas been modified suitably for feedback of (3) is able to stabilize the respective
the adaptation of Nakajima's (1998) half-period periodic orbit. In this case, the perturbation vanishes
delay feedback. Hence, this paper has the followingand
structure: In Section 2, Nakajima's (1998) control
method is recalled. Section 3 introduces the idea of
the non-linear filter and proves that the control
scheme is robust to control parameter variation. In
Section 4, the scheme in application to the Duffing It has been verified in application to practically valid

Tper
=5

t|im (a(t)) = go,tlim (F(t))=0. (4)

oscillator and the Lorenz system is documented.

2. NAKAJIMA'S HALF-PERIOD DELAY
FEEDBACK

As for Pyragas’ control method, Nakajima's (1998)

examples that the gakusually lies within a

compact sub-set ofl ™" for which the feedback
law is operating and relation (4) is satisfied.
Nevertheless, the other important control parameter,
the delay, Ty , has to be accurately adjusted to the

half-period delay feedback assumes a chaoticallyuniquely deﬁnedTﬂ so that it is possible to
2

behaving differential system:

%: f(x(t),a), x0o0", ano™, W
x=Pq X o x|
a=[a a - ay,

which can be perturbed by a parameter vector

add™  continuously  within interval

a D[aoi —-Fo;,ag; +F0iJ around a nominal value

an

a,00™ where F; >0, i =12..m. Further, it is
assumed that the period lenglf , is well defined

for a particular unstable periodic orbit and that the
trajectory X per (t) of the unstable periodic orbit is

symmetric:

l(per (t) ==X per (t _Tper /2) . (2)

stabilize a true periodic orbit of the chaotic attractor.
Thus, the next section suggests a method which
allows the adjustment of,, via output feedback
employing a robust non-linear filter technique using
a reasonable initial guess g -

3. AROBUST SCHEME FOR ONLINE
ADJUSTMENT OF THE DELAY

It is assumed that Nakajima’s controller ensures, for
a reasonable guess Oy, close toTpe , that the

signalxj(t) becomes periodic Wit similar to
the intrinsic unstable periodic orbit:

@ Hemr = ®)
) =ag+ Y a,&in hid+
XI() 0 nz:j_ n Elh—kper ¢nE|

Hence, the first harmonic of the signaks(t) and

Nakajima's (1998) approach for a feedback control is -x; (t - T.,,) have a phase difference of

to use a statgj(t) of (1) and to induce via the
following signal



Hrper H]Z (6) Introducing, after this non-linear operation, a low
/ con 27T pass filter LP(] with cut-off frequency

Tper WL p <<_|_4—n, it is possible to extract the zeroth
per

This phase difference is an indicator how much in harmonic of the latter signal:
error the delay timeT.,, with respect to the
demanded value of b /2 is. Thus, it is the aim to
determine this phase difference practically for it to be = -ay, & EﬁzsinWME:os@z -1
used within the control scheme to adjdst,. A
non-linear filter, used for phase-locked loops within = -ag, (& (&, [tos@, - ¢1)
analogue communication systems, can extract this
phase difference using another delayed signalfor
Xi (t—Teon/2). For delay adaptation, the first
harmonics of Xi(t—Teon/ 2) and
Xj () +X (t-Teon) are obtained via two band-pass

filters BFlrl([ﬂ and BFlr2 () with centre frequencies

my = LP(BRy (X (t = Toon /2)) BBy, (4(1) + X (t = Teon)))  (11)

MTeon ~ Tper 12)
T

per

T(Teon _Tper 12) «<1
T

per

For small values of(’l’cc,n —Tperlz), the signal

m, (11) is proportional to the phase difference of

2 2m . . )

of —, — radians and a passband wid¥w > 0 (6). Note that the resulting phase error measure
! 2 signal m, is robust to slightly mismatched bandpass

which allows to suppress any other harmonic of
Xj(t=Teon/2) and x; (t) +xj (t —Teon) : filters BPrl([ﬂ and BPrz(m as long as
Tcon —Toer /2) and ¢ — ¢, are sufficiently small
21 Dw 21 Aw _ 4m @) o ~Trer /2] R
0<— , —+—< , (Herrmann, 2001). In this case, the factor

T2 T 2 T

0< a Aw, 2" Aw an damping effect but remains positive. Hentg, (11)

T2 2 T2 2 TkPEf has the same sign as the phase difference of (6).
) ) ) Thus, the signalm), can now be used to adjust the
Practically, bandpass filters introduce a phase error

and an amplitude damping. Foff, and T, close  9€@Y Teon 10 its optimal value using a simple
: ) Proportional-Integral (PI)-control scheme.
enough toT e , it follows:

amp (B [&, [tos@, —¢;) introduces a non-linear

(8) dstrbance @ = @ I (t=0)
BR; (X (t ~Toon/2) = alE'slnET—(t Con/2)+¢1E o
BRy, (% (t) + X (t = Teon)) (9)
. — ;
=4, [ksin t+¢ +smHz—(t ~Teon) & EE Ml |
E% Hew  °H e i T _l K k
A § 5 -
| — 'ﬂ'] iy +\
whered; , a, are the resulting amplitudes arpgl, ¢, —_ k_| T
are the phase shifts of the first harmonic and due nonlnear filter |

the filters BPrl(m and BPr2 (0. Multiplying both

filtered signals, it follows:

Fig. 1. Delay control system structure

BRy, (% (t = Teon/ 2))BPr, (% (1) + % (t=Teon)) (10)
—2Ga BmH t_ ‘o, Suppose the nonlinear filter form, (11) is
- 192 COFI
HTper per H reasonably linear and fast so that it can be regarded
et A as a static linear element amplifying the error
t—Teon/ 2 . .
%ﬁ con %ln (t=Teon )+¢1H (Teon ~T per /2) with a gain %K . ap [&y [,
__alazs,an(TCO“ ~Tre 12 Under this condition, the characteristic equation of
H per H this simple Pl-control loop (Figure 1) is a first order

4T 21 polynomial inS:
0sfp, —¢1) —co t—_I_

0 per per

Tcon +¢2 +¢1%



12 14
Tr[ kl[}'rp[ﬁl[ﬁz ( ) E:E:L,Aw:L ( )
S+ K per Tt T2 Teon(=0) Teon(t=0)
Hn H 0.3
kp Carp @1@2*'1 Wp=-——""=—
ETK per P % 2Teon(t=0)

The Pl-loop is stable for a negative root of the via the initial value, Tgoy(t =0), of the controller

characteristic function irs, e.g. for positive values  delay. Several initial valueS, (t =0), have been

of the loop gaing; andk,. tested: Nakajima's control without delay adaptation
was initiated att =40 and the delay adaptation

Chaotic 1) started att =60. The results (Figure 3) show that

dystem 3 the optimal value of the delay and subsequently the

Actnator

/ I period of the unstable orbit is more accurately given

by
Aii-T )

Lon L Tt = U_\_ Tper 1.57%6 (15)

KT ]‘_r

‘BP '.;'.';.i

From Figure 4 and 6, it can be seen that Nakajima's
regulator in combination with the delay-adaptation
scheme indeed stabilises a symmetric unstable
0T T periodic orbit of the Lorenz system as the value
of Xx(t) +X(t—Teon)  cOnverges to numerically

5T =L ogn)

1P (.0}

Fig. 2. Nakajima's modified controller negligible values.

The merit of employing the integral element usin¢ °7%f
k for control is that the Pl-control will ultimately ©°7s__ __ __ __ __ __
force (Tcon ~Tper / 2) to be 0. The modified scheme "7 ‘

of Nakajima (1998) is presented with Figure 2. Inth *""T
next section it will be seen that this control strateg.-3°77 C
is robust and easily applicable to chaotic systems.  ozes Yoo

4. APPLICATION TO THE DUFFING- o
OSCILLATOR AND THE LORENZ SYSTEM i v

0.751

Nakajima (1998) could show that an unstable one-_. ° 40_ v o . h_m
periodic orbit of the Lorenz sysem with the Fig. 3. Adaptation of delayTqg(t) considering

following parameterization different initial Tqo (t =0) for the Lorenz system

X =-100¢0) - yO) - () (13)
§(0) = 280 - Y0 - X0 20)
20 = XY -5 20) |

>
¥
A

can be stabilized employing a control 'I;mﬂ,f
F(t) =k(X(t —Teon) + X(t)), Fg=5, and K>4.
The period, Tpe =1. 58, of the unstable orbit has

10° |

not been exactly determined by Nakajima (1998

with the result that the control signal did not 0 20 40 60 80 100 120 140

converge to O and the post-transient behaviourgig 4. Dynamics ofx(t) + x(t—Teon) Of the Lorenz
showed that the value for the del®y,, has to be system forTen(t =0) = 0.771

optimized. Hence, the delay adaptation scheme has

been tested for this system employing for Nakajami's

control K =75, for the Pl-control gains

ki =0.001andk, =0 and for the band-pass and the

low-pass standard butterworth filters of third order,

where the respective centre frequencies; the band
width and the cut-off frequency have been selected
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Fig. 5. Dynamics ofx(t), y(t), z(t) of the Lorenz Fig. 8. Adaptation ofT o, (t) for the Lorenz system,
system forTeon(t =0)= 0.771 052 =0.001 and differentTo, (t =0).

o 5 10 15 L L L L L L L
x(t) —-15 -10 -5 o 5 10 15

Fig. 6. Lorenz attractor (dashed) and stabilizeu .. : ey 2O _
periodic orbit (ine)  displayed via delay Fig. 9. Trajectory of(x(t), x(t + 0.25)) derived from

coordinates(x(t), x(t +0.25)) the noisy measurement (16) of the controlled
Lorenz system c(rgc2 =0.

Robustness of the control scheme can be shown in (Transient=dashed, post-transient=line)
case of additive white nois&(t) introduced for the

measuremenxk(t) :

—-15 —-10 -5

Note that the numerical absolute and relative
accuracy for testing different numerical simulation

X(t) = x(t) + () (16) methods was kept to a maximum 1°° while the
' maximal time step was 0.0005.
The regulator is evaluated for a noise power of
052 =0.001showing that the delay adaptation Similar tests have been conducted for the forced

(Figure 7, Figure 8) is still operating despite the high Duffing oscillator:
level of noise (Figure 6, Figure 9). The post-transient

value of Tey(t) is in average the half-period value ~ X(t) = ¥(t) ~sat(F(t)) 17)
Toe _1.574 y(t) = -0.25y(t) + x(t) - °(t) +0.3cost)
2 2 ™)
where F(t) = K(x(t —Teon) + X(t)), Fo =1, K =3.
= ‘ ‘ ‘ ‘ ‘ ‘ ‘ "1 and the low-pass and band-pass filter have been
< o | chosen as in (14) while for the Pl-control the choice
-0 ST VTR AT of kj =3and k, =0 has been suitable. The optimal
o 10 20 30 40 50 60 70 80 90
201 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ i . Tper . . .
WWMWWWWWWWM value for Teoy is —— =7. Numerical simulation
> ol 2
e shows thatTc,, adjusts to this value for different

40 initial values (Figure 10) using a similar procedure
~ ol w for adaptation ofTgy: the control scheme without
delay adaptation is initiated &t=50 followed by the
t start of the delay adaptation &t=150. In practice,
Fig. 7. Dynamics ofx(t), y(t), z(t) of the Lorenz  the adaptation of forced chaotic systems might be of
system forTen(t =0) = 0.771, 052 =0.001 interest for systems where the exact characteristic of
the driving signal is not known.

oL . . . . . . . . .
o 10 20 30 40 50 60 70 80 90
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