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Abstract: A robust adaptation scheme for the delay of a continuous-time chaos control
with half-period delayed feedback is presented. The phase-difference between the
measured signal and the delayed measurement control is detected to adjust the delay to its
optimum. The method when applied to the Lorenz and the Duffing oscillator shows high
robustness. Copyright © 2002 IFAC

Keywords: Chaotic behaviour, non-linear systems, stabilization methods, delay, phase
locked loop.

1. INTRODUCTION

Within many physical  systems, chaotic behaviour is
undesirable. Nevertheless, regulation of physical
systems by changing some parameters to a large
extent is often also undesirable. Thus, the control of
chaotic behaviour by small parameter variations has
been of common practical and theoretical interest for
many years.  In practical examples, such as laser
systems  (Ott, et. al., 1994 ) or aircraft engine
combustion systems (Chen, 1999), it has been
important to control chaotic oscillations to improve
system efficiency. Several texts (Boccaletti, et. al.,
2000) are available  reviewing methods for control of
chaotic dynamics.   Methods  for stabilisation of
intrinsic unstable periodic orbits within chaotic
systems via small parameter perturbation can be
divided into two classes,  continuous  and discrete
control methods.  Discrete control methods such as
the OGY-technique (Ott, et. al., 1990) generally
reside on an on-line Poincare cut analysis and a
respective identification of a model for control,
which, for noisy measurements in particular, can be
very complex. Continuous-time control methods do
not suffer from this problem since they are generally
not model-based and do not demand an on-line data
analysis. One particular continuous control
technique, developed by Pyragas (1992) involving a
delayed feedback, has attracted longstanding interest
and has proven to be very useful in application to
practical systems  (Chen, 1999; Celka, 1994; Holyst,
et.al., 2000; Kittel, 1995; Pyragas, 1992; Pyragas, et.
al., 1993; Pyragas, 1995; Schoell, et. al., 1993;
Schoell, et. al., 1994).  This control method uses a
delayed feedback employing a suitably amplified

difference of an  output measurement of the chaotic
system and, respectively, the delayed measurement
for control. The control signal vanishes in the post-
transient behaviour for the stabilized orbit. Thus, the
delay time has to be the exact value of the period of
the unstable intrinsic orbit. However, Nakajima
(1997) and Just, el. al., (1997) proved a practical
limitation of this continuous control method: a
hyperbolic unstable periodic orbit with an odd
number of real characteristic multipliers greater than
unity can never be stabilised by the delay control
method introduced by Pyragas (1992).  A
modification  of  Pyragas' (1992) control method
suggested by  Nakajima (1998) has resolved this
problem and was successfully demonstrated for the
Duffing equation and the chaotic Lorenz system.
Provided the  solution )(tx per  of the unstable

periodic orbit with period perT  is symmetric,

)2/()( perperper Ttxtx −−= , then the control signal

is chosen to be proportional  to )()( conTtxtx −+
involving a half-period delay 2/percon TT =  for the

delayed state vector )( conTtx − . For a stabilised
orbit, this signal becomes zero provided the
employed delay is exactly adjusted.  Nevertheless,
this delay is not known a-priori. Recently, a
continuous-time methodology (Herrmann, 2001) has
been suggested which complements and improves
currently used techniques for delay adaptation (Chen,
et. al., 1999,  Pyragas, et. al., 1993;  Kittel, et. al.,
1995; Yu, 1999).  These iterative schemes rely on the
analysis of time-sampled data  from output
measurements of the chaotic system. Hence, these
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techniques can provide good results if the
measurements are not noisy. The continuous-time
adaptation method introduced by Herrmann  (2001)
complements these existing schemes by using a
guess for the period  length of the orbit and evades
the issue of discrete-time, on-line data analysis
during the actual control process; it is therefore more
robust to measurement noise. This technique
employs  a non-linear filter known from phase-
locked loops (Blake, 1993) and incorporates a
proportional-integral control (PI-control). Initially,
the good guess of the period length can be taken
from an output data analysis by identifying the
unstable orbits and the respective period length for
the unperturbed chaotic system (Auerbach, 1987;
Lathrop, 1989) or subsequently from discrete control
and delay adaptation results (Ott, et. al., 1990, Chen,
et. al., 1999,  Pyragas, et. al., 1993;  Kittel, et. al.,
1995; Yu, 1999). However, Herrmann  (2001)  has
demonstrated that a highly accurate guess for the
period duration is not necessary. To show the wide
applicability of the suggested  approach, the
continuous technique has been  modified suitably for
the adaptation of Nakajima's (1998) half-period
delay feedback. Hence, this paper has the following
structure: In Section 2, Nakajima's (1998)  control
method  is recalled. Section 3 introduces the idea of
the non-linear filter and proves that the control
scheme is robust to control parameter variation. In
Section 4, the scheme in application to the Duffing
oscillator and the Lorenz system is documented.

2. NAKAJIMA'S HALF-PERIOD DELAY
FEEDBACK

As for Pyragas’ control method, Nakajima's (1998)
half-period delay feedback assumes a chaotically
behaving differential system:
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which can be perturbed by a parameter vector
ma ℜ∈  continuously within an interval

[ ]iiiii FaFaa 0000 , +−∈  around a nominal value

ma ℜ∈0  where 00 >iF , mi ...2,1= . Further, it is

assumed that the period length, perT , is well defined

for a particular unstable periodic orbit and that the
trajectory )(tx per  of the unstable periodic orbit is

symmetric:

)2/()( perperper Ttxtx −−= . (2)

Nakajima's (1998) approach for a feedback control is
to use a state xi(t)  of (1) and to induce via a   the

following signal:
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The perturbation around the value a0  has not only
been  limited by a saturation function to keep the
dynamical characteristics as close as possible to the
original system’s behaviour but also to prevent
practically the problem of multi-stabilities (Pyragas,
1992). It has been found for suitable examples that
for 2/percon TT =  and for appropriate gain K  the

feedback of (3) is able to stabilize the respective
periodic orbit. In this case, the perturbation vanishes
and

0))((lim ata
t
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, 0))((lim =
∞→
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t
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It has been verified in application to practically valid
examples that the gainK usually lies within a

compact sub-set of nm×ℜ   for which the feedback
law is operating and relation (4) is satisfied.
Nevertheless, the other important control parameter,
the delay, conT , has to be accurately adjusted to the

uniquely defined 
2
perT

 so that it is possible to

stabilize a true periodic orbit of the chaotic attractor.
Thus, the next section suggests a method which
allows the adjustment of conT  via output feedback
employing a robust non-linear filter technique using
a reasonable initial guess for conT .

3. A ROBUST SCHEME FOR ONLINE
ADJUSTMENT OF THE DELAY

It is assumed that Nakajima’s controller ensures, for
a reasonable guess of conT  close to perT , that the

signal xi(t)  becomes periodic with perT  similar to

the intrinsic unstable periodic orbit:
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Hence, the first harmonic of the signals )(txi  and

)( coni Ttx −−  have a phase difference of
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This phase difference is an indicator how much in
error the delay time conT  with respect to the

demanded value of 2/perT  is. Thus, it is the aim to

determine this phase difference practically for it to be
used within the control scheme to adjust conT .  A
non-linear filter, used for phase-locked loops within
analogue communication systems, can extract this
phase difference using another delayed signal

)2( coni Ttx − . For delay adaptation, the first

harmonics of )2/( coni Ttx −  and

)()( conii Ttxtx −+   are  obtained via two band-pass

filters )(
1

⋅TBP  and )(
2

⋅TBP  with  centre frequencies
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 radians and a passband width 0>∆ω

which allows to suppress any other harmonic of
)2/( coni Ttx −  and )()( conii Ttxtx −+ :
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Practically, bandpass filters introduce a phase error
and an amplitude damping. For  1T  and 2T  close

enough to perT , it follows:
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where 1â , 2â  are the resulting amplitudes and 1ϕ , 2ϕ
are the phase shifts of the first harmonic and due to
the  filters )(

1
⋅TBP  and )(

2
⋅TBP . Multiplying both

filtered signals, it follows:
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Introducing, after this non-linear operation, a low
pass filter )(⋅LP  with cut-off frequency

per
LP T

πω 4<< , it is possible to extract the zeroth

harmonic of the latter signal:
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For small values of ( )2/percon TT − , the signal

mϕ (11)  is proportional to the phase difference of

(6). Note that the resulting phase error measure
signal mϕ  is robust to slightly mismatched bandpass

filters )(
1

⋅TBP  and )(
2

⋅TBP  as long as

( )2/percon TT −  and 21 ϕϕ −  are sufficiently small

(Herrmann, 2001). In this case, the factor
)cos(ˆˆ 1221 ϕϕ −⋅⋅⋅ aaaTp  introduces a non-linear

damping effect but remains positive. Hence, mϕ (11)

has the same sign as the phase difference of (6).
Thus, the signal mϕ  can now be  used to adjust the

delay conT  to its optimal value using a simple
Proportional-Integral (PI)-control scheme.

Fig. 1. Delay control system structure

Suppose the nonlinear filter for ϕm  (11) is

reasonably linear and fast so that it can be regarded
as a static linear element amplifying the error

( )2/percon TT −  with a gain 21 ˆˆ aaaT TP
perK

⋅⋅π .

Under this condition, the characteristic equation of
this simple PI-control loop (Figure 1) is a first order
polynomial ins :
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The PI-loop is stable for a negative root of the
characteristic function in s , e.g. for positive values
of the loop gains ik  and pk .

   Fig. 2. Nakajima's modified controller

The merit of employing the integral element using

ik for control is that the PI-control will ultimately

force ( )2/percon TT −  to be 0. The modified scheme

of Nakajima (1998) is presented with Figure 2. In the
next section it will be seen that this control strategy
is robust and easily applicable to chaotic systems.

4.   APPLICATION TO THE DUFFING-
OSCILLATOR AND THE LORENZ  SYSTEM

Nakajima (1998) could show that an unstable one-
periodic orbit of the Lorenz system with the
following parameterization
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can be stabilized employing a control
))()(()( txTtxktF con +−= , 50 =F , and 4>K .

The period,   559.1≈perT , of the unstable orbit has

not been exactly determined by Nakajima (1998)
with the result that the control signal did not
converge to 0 and the post-transient behaviour
showed that the value for the delay,conT , has to be
optimized. Hence, the delay adaptation scheme has
been tested for this system employing for Nakajami's
control 5.7=K , for the PI-control gains

001.0=ik and 0=pk  and for the band-pass and the

low-pass standard butterworth filters of third order,
where the respective centre frequencies; the band
width and  the  cut-off frequency have been selected
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via the initial value, )0( =tTcon , of the controller

delay.  Several initial values, )0( =tTcon , have been
tested: Nakajima's control without delay adaptation
was initiated at 40=t  and the delay adaptation
started at 60=t .  The results (Figure 3) show that
the optimal value of the delay and subsequently the
period of the unstable orbit is more accurately given
by

2
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== per
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From Figure 4 and 6, it can be seen that Nakajima's
regulator in combination with the delay-adaptation
scheme indeed stabilises a symmetric unstable
periodic orbit of the Lorenz system as the value
of )()( conTtxtx −+  converges to numerically
negligible values.
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Robustness of the control scheme can be shown in
case of additive white noise )(tξ  introduced for the

measurement )(tx :

)()()(~ ttxtx ξ+= . (16)

The regulator is evaluated for a noise power of

001.02 =ξσ showing that the delay adaptation

(Figure 7, Figure 8) is still operating despite the high
level of noise (Figure 6, Figure 9). The post-transient
value of )(tTcon  is in average the half-period value
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Note that the numerical absolute and relative
accuracy for testing different numerical simulation

methods was kept to a maximum of 610−  while the
maximal time step was 0.0005.

Similar tests have been conducted for the forced
Duffing oscillator:
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where ))()(()( txTtxKtF con +−= , 10 =F , .3=K

and the low-pass and band-pass filter have been
chosen as in (14) while for the PI-control the choice
of 3=ik and 0=pk  has been suitable. The optimal

value for conT  is π=
2
perT

. Numerical simulation

shows that conT  adjusts to this value for different
initial values (Figure 10) using a similar procedure
for adaptation of conT :  the control scheme without

delay adaptation is initiated at 50=t  followed by the
start of the delay adaptation at 150=t .  In practice,
the  adaptation of forced chaotic systems might be of
interest for systems where the exact characteristic of
the driving signal is not known.
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3. CONCLUSIONS

This paper has presented the application of a robust
delay adaptation approach for Nakajima's half-
period-delay chaos control methodology. For delay
adaptation, the phase difference of output
measurement and delayed output measurement is
extracted via a non-linear filter known from phase-
locked loop methods. The filter combined with a
simple PI-control is readily incorporated into
Nakajima’s control. The  design of the non-linear
filter is based on a good guess of the actual period
duration of the periodic orbit. The control scheme is
robust to a large variation of this initial value used
for control design. Further, the scheme is robust to
output measurement noise since it prevents a
complex sampled-data analysis of output
measurement data.  Thus, the scheme known from a
practical extension of Pyragas' delay feedback has
shown to be effective in application to a wider class
of chaos control techniques.
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