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Abstract: In this paper, a two step approach for backlash identification is proposed.
In the first step, using a physical relation between backlash amplitude, the
vibration produced by backlash and the backlash input, a pre-estimation is
established. In the second step, a least square criterion is minimized around the
pre-estimation. The method is tested in simulation on a system consisting of a
driving motor and a load coupled to it through a gear and a shaft. The method
is simple and can be easily generalized to systems containing many shafts. The
simulation results confirm the good performance of the method. Copyright © 2002
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1. INTRODUCTION

Backlash is one of the most important non-
linearity that limits the performance of speed and
position control. In industrial drives, backlash is
present in elements as gear boxes and flexible
couplings. It is a destablizing factor for example,
if the gear backlash is hold in motor drive systems
with a torsional loads, the results of a speed step
response is with extended duration of vibration.
In the literature, several methods for backlash
amplitude identification, modeled by dead zone,
have been studied. In most of these works, the
system models are (see figure 1): Hammerstein
(Tao and Kokotovic, 1993), Wiener (Tian and
Tao, 1997); (Woo et al., 1998) or Hammerstein-
Wiener (Tao, 1996). The common point of all
these approaches is that the system is divided in
non linear blocks (backlash), and one or several
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Fig. 1. The models used for backlash iden-
tification: a) Hammerstein, b) Wiener, c)
Hammerstein-Wiener.

linear blocks representing the other parts of the
system. Unfortunately, these methods cannot be
applied to a system with feedbacks (figure 2).

Other researchers (Stein and Wang, 1998) have
tried to estimate the backlash amplitude, 0, using
the vibrations (amplitudes) of the motor speed,
wpg, or of the load speed, wy, (figure 3). The
phenomenon of vibration occurs when the input
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Fig. 2. The motor drive system with a torsional
load and the bloc diagram representation.
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Fig. 3. Vibration introduced by a sinus input.

torque, Cpy, excites the backlash. It means that
an input, who changes the rotation direction of
the motor. However, as specify the authors, the
method is sensible to the calibration of the system.
Moreover, the generalization of the approach to
the systems containing several shafts is not obvi-
ous.

In this paper, we present an original two steps
approach. In the first step, a pre-estimation of
the backlash amplitude (@ in figure 2) is per-
formed based on the physical relation between
the vibration instants, backlash amplitude and
the backlash input. In the second step, to obtain
the final estimation of the backlash amplitude,
a least square criteria is minimized around the
pre-estimation. The identification signals are the
noisy measurements of the motor speed, wys,, , and
load speed, wr,. ? It is assumed that the other
parameters (see figure 2), are random variables
centered around their exact values.

The simulation results confirm the good perfor-
mance of the proposed method and show that the
pre-estimation is crucial for obtaining a good final
estimation using the least square approach.

For a system composed of many shafts, was, must

2 Wy, =wnm +0M, WL, =wr+nL,where ny and ng,

represent the measurement noise.

Y, =d,

be replaced by the angular velocity of the last
inertia before backlash.

The paper is organized as follows. The section 2
represents the system. In the section 3, the vi-
bration phenomenon is explained and the physical
relation is presented. In the section 4, the two step
approach to identify the backlash is explained and
an algorithm is proposed. The simulation result
are illustrated in the section 5.

2. STUDIED SYSTEM

The system consists of a driving motor and a
load coupled to it through a gear and a shaft.The
motor drive system with torsional load is shown
in figure 2. The linear parameters are: Jps and
Ji, inertia of the motor and of the load, fas and
fr, viscous friction of the motor and of the load,
fsn and ksp, coefficients of viscous damping and
of elasticity of the shaft, respectively. The vector
of linear parameters, P, is defined as:

P = [JM, JL: fMa fIn fsha ksh]- The only non
linear parameter is the backlash amplitude, §. The
backlash is described by a dead zone model:

r—6§ >0

z+60z< -0 (1)
0 Jz|<4

DZy(z) =

The system can be represented by the following
equations:

JM-(_}_S.I-VI + fM_-d’}VI = Cpm ~ Csn(da)
Jror + fr-or = Csn(da)

Csn(9a) = § ksn.(da +6) + fon(¢d) ¢a < —0

0 |pa| < 6
$a = M — oL

where, dJ}W and ¢.L, represent the motor and the
load speed ( the notations wps and wy, are also
used for them) and ¢4 is the difference between
the angles of the motor and of the load. The block
diagram of the system is also shown in figure 2,

where ¢1(s) and gs(s) =

— 1 1
— JIMm.st+fm Jr.s+fr°

3. PHYSICAL RELATION

The torque, Csp, has simultaneously the role of
the exciting torque for wy, = J)L and of the resis-
tant torque for was = ¢ar. Each time the backlash
input, u; = ¢q, enters or gets out of the dead zone,
[—8, 6], corresponds to a commutation instant, .,
(see figure 4). It can be shown that for this system
the amplitude of the oscillations of wps and wy,
decreases and the system is asymptotically stable
(Appendix A).

The following relation exists between the back-

ksn.(da — 0) + fsh(¢:d) ¢a 20 )
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Fig. 4. Zoom on the step responses of system
(around ¢t = 0) , (a) the motor and the load
speeds, wpy and wr, (b) the backlash input
1u; = ¢4, and dead zone, [—6,4], (c) the load
torque, Csp.
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Fig. 5. Right : the phase diagram of system be-
tween t = 0 and ¢ = 2.t5, when Cpr(2) = 0.3x
Amaz-{1(t) — 1(t — £,)) . Left: the same phase
diagram around ¢ = t;. The commutation
instants t. and ¢y are also shown.

lash amplitude, 8, the angular speeds wys and wyg,
the angular difference at ¢ = 0, ¢4(0) and the
vibration instant Z.;:

te;
e=mmmq/%m+m@|
0 (3)

te

i

=| | (wm —wr).dt + ¢a(0)|
/

It is shown that to eliminate ¢4(0), one can use
the following relation (Appendix B):
iy

[en@u®) -y

CM(t) = t(;:]l(t) - al.l(t — ts)

6=-0.5

In this relation, ¢ = ¢, is an instant at which the
system , with step input Ca(t) = a.1(¢), becomes
stable, t = t. and t = ¢; are the two first vibration
instants after ¢ = ¢5 (see also figure 5).

(4)

4. BACKLASH IDENTIFICATION

The backlash amplitude, 8, may be estimated by
minimizing a least square criterion, evaluated for
one of the system outputs (for example wpr). If
the domain of variations of # is considered to be
between #; and 6, one can write:

t;
= i — @ t 2
6=arg min Zt: (wnm(t) — om(t,60))? (5)

where &) is the output of the model and it is
found by replacing the uncertain linear parame-
ters P in the system equations (2).

4.1 Pre-estimation of backlash amplitude

To use the relation (4) for backlash pre-estimation,
one must notice that, firstly, the identification
signals are noisy measurements of the motor and
of the load speeds, war, and wg.,, thus, two low
pass filters must be used, and , secondly, the com-
mutation instants t., £, are unknown. Therefore,
the final relation for pre-estimation of backlash
amplitude, 6;,;, is:

A

ty
Oini = —0.5-/(wa (t) —wr, (&).dt  (6)

where, &.,t, are the estimations of t., 5 and the
index f represents the filtered signals.

Estimation of the commutation instants, ¢., ts:
During the interval [t.,2;], backlash is active and
Csn = 0. From the system equations (2):

Jiwp + frwr =0 (7)

which results in:

wr(t) = wr(t:)e ¢4 ¢t € [te, ts] (8)
In this relation, & = f,/Jy, is the time constant of
the load. The exact values of ¢, and ¢, are noted
by t? and t;. Three variables &t1, 6t and dt3 are
selected to satisfy the following inequalities:

ts <th <ts+ 8t <&
ts + 3t <t <tg+dt3 <ig

where, t, is the estimation of the third commu-
taion instant after ¢ (figure 6). One defines the
two following functions:
wr, (&
F(tt) = {wigt:;e—a(t—tc)
{ wi,(tp)e "t te)
wr(ts)

ts <t <t
t, <t<ts+ 6t
ts + 0t <t <ty

Fy(t, ts) ty <t <ty + Ot
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Fig. 6. The time intervals used for estimation of
the commutation instants.

It is shown that the commutation instants can be
estimated using the following relations (Appendix

C):

te = argmin(We(te))i.elta ta+ota
ts+0t1

Wc(tc) = Z (wL(t) -F (t, tc))2
t=t, 9

ty = argmin(We(ts))s, clt,+5ta,ts +6ta[
t,+5t3

Wets) = D (wp(t) — Fa(t, 1))

t=t,+6t2

These relations can be finally used after replacing
the load speed, wy, by its noisy measurement,
wr.,, , and the time constant of rotation of the load

a= ‘JL’; by its estimation & = %

Filtering the measurement signals:
After estimating the commutation instants, £,
and f, the frequency spectra of wr, (t) and of
wm, (), t. <t < 1 are traced and the cut off
frequencies of FIR filters are found.

4.2 Final estimation of Backlash amplitude

The final estimation is performed using the pre-
estimation 0;,;:

¢ A .
?= 28 o 1)
ts+0ts
J Wi(6) = Y (wm.(t, P") —am(t, P,6))
t=t,
CM(t) - ag.l(t) - az.l(t - ts)
01 = 0ini(1 — ng)
\02 = éim'(l +ng) O0<ng <1

Comparing with the relation (5), the variables,
ti, tj, and the input, Ca(t), are chosen in the
following manner:

1) t; = t4, to eliminate the dependence on the ini-
tial condition of the system, ¢4(0) (see Appendix
B).

2} To reduce the influence of uncertain linear
parameters, Pin Wi:

o The identification time, é;, = t; —t;, must be
small.

e The input, C'ps, must not excite too much the
linear dynamics but must excite the backlash
, Cm(t) = a.1(t) — a.1(t — t;) (Appendix B).

Remark: The maximum of the applied step input,
@maz, is limited because of the maximum allow-
able value of the motor speed wa,,.,.: Gmaz =
“Mmaz where g, is the steady-state gain of the

gs
system.

4.3 Identification algorithme

1) Find the steady-state gain, g,, and the stability
time, ¢4, using a step response of the system.

2) Compute the maximum allowable amplitude of
the step inputs, amaz-

3) Apply : Cm(t) = a1.1(2) — a;1.1(t — ts).

4) Estimate the commutation instances, t. et tp.
5) Filter the measurement signals, wus, et wr,.
6) Pre-estimate the backlash amplitude, G{M.
7)Apply : Cum(t) = a2.1(t) — a2.1(t — ts).
8)Estimate the backlash amplitude, 6.

5. SIMULATION RESULTS

The block diagram of the system, presented in
figure 2, is simulated using:
Jm =4.88x 1073, J, = 6.8x 1072 [Kg.m2]
ksh = T8 [X2), fur = fL = 0.5 x 1072 [Mme
fon = 1.575 x 1072 [Mms]
9=20=349x10"2 rad, T; =1 ms
SNR,, = 6.43db, SNR,,, = 17.4 db (1°¢ step)
SNR,, = 35.6db, SNR,,,, = 35.7 db (2" step).
At the second step of identification, when the
estimated angular velocity of motor, @ur, is used,
the block diagram is simulated using the esti-
mations of linear parameters, P, and the pre-
estimation of @ found in the first step, G;n;. It
is assumed that the estimations, 13, are random
variables whose means are at the exact values , P*
(the values presented above). This assumption is
applied using the formula P = P*(1 - Errp,.X),
where, X is the vector of random variables with
uniform distribution between —1 and 1, centered
and of variance 1. Using the parameter Err,, the
maximum of the estimation error P* — P can be
modified. Evidently, the larger Erry, is the more
erroneous the estimation P is.
For this system, gs = 100 and ¢, is chosen as the
rise time ¢, = 40 s. Supposing wpy,,,, = 157 222,
maximum allowable amplitude of step input is
Omaez = 1.57 N.m. In the identification algorithm,
a; = 0.1 X amae, a2 = 0.6 X @maz, ng = 0.1 and
6t4 = 1 s. The cut off frequencies of the two FIR
filters are 50 72¢ and 20 ™%¢ for wy, and wi,,
respectively.
Considering the different values for the parame-
ter Erry, table 1 presents the estimations of 6



found by the proposed identification algorithm,
64, and table 2 presents the estimation found by
the following non-linear regression model, which
does not use pre-estimation, éReg:

éReg = arggg{l;inr{" Wheg
ta+6t4

Wreg = Y (wm(Cu(t)) — om(Cu(t),6))?
t=t,

Cu(t) = ag.1(t) — ax.1(t — ts)

amat = [0, 150]

This criterion is independent of the initial condi-
tion of the system, ¢4(0) (see section 4.2). For each
value of Erry , 10 experiences are performed. The
backlash estimations, éAl and éReg, and the stan-
dard deviations, d4; and dgeq, presented in these
two tables, are found based on these experiences.
As can be seen, the backlash amplitude can be
estimated by the proposed algorithm more pre-
cisely and with less standard deviation than with
non linear regression method. In addition, the
proposed algorithm is more robust according to
the maximum error in the linear parameter esti-
mation, Erry, because the algorithm uses the pre-
estimation which is found independently of the
linear parameter estimation.

Table 1. The backlash estimated by the
proposed algorithm during 10 experi-
ences (§* = 3.49 x 1072).

Errp% 10% 20% 30% 40%
1 325 279 34 34
2 34 325 34 29
3 34 28 34 34
4 279 325 325 3.4
5 34 34 34 28
6 294 31 34 29
7 325 34 28 34
8 34 34 34 28

9 279 2.8 3.4 2.9

10 34 28 28 3.1
100 x fgey 321 31 327 311
+err% 8% 11% 6.3% 10.8%

50 x 103 2.64 283 258 2.7

Table 2. The backlash estimated by the
non-linear regression method during 10
experiences (§* = 3.49 x 1072).

Errp% 10% 20% 30% 40%
1 349 5.4 5.23 1.74
2 0 0 3.49 1.74
3 349 524 20.9 0

4 5.24 12.2 0 20.9
5 3.49 1.74 12.2 12.2
6 0 5.24 5.24 3.49
7 3.49 1.74 1.74 5.23
8 0 0 3.49 1.74
9 0 0 1.74 10.5
10 3.49  3.49 2.09 5.24
100 x Ogey 227 4.1 7.5 6.28
+err% 34.9% -17.4% -115% —80%
30 x 102 2.02 3.6 7.8 6.49

6. CONCLUSION

A new approach for estimating the backlash am-
plitude, characterized by dead zone model, is pro-
posed. Identification is achieved in two main steps.
In the first step, a pre-estimation of the backlash
amplitude, is performed based on the existing
physical relation between the amplitude of the
backlash, instant of commutation , the motor and
the load speeds. In the second step, a least square
criterion based on the model of the motor speed
(non-linear regression model) is minimized around
the pre-estimation.

The comparison between the backlash identifica-
tion made by this approach and an approach that
doesn’t use the pre-estimation illustrates that the
first method is considerably advantageous.
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7. APPENDIX A: PROOF OF THE
ASYMPTOTIC STABILITY

According to the equations (2), the 3 vectors of
the state variables can be defined:

. X; = A1X1 )
ba20: X1 = [¢m, b1, dm — 61— 67
. Xo =A2..X2.
$a< b {X2=[¢M, ¢, om — ¢r +6]7
. X3 =A;?.X3.
|¢d| S 0: {X3 — [¢M1 ¢L]T

Considering det(A;) # 0, ¢ = 1,2,3, the three
stability points, X,,, 1 = 1,2, 3, can be found by
assuming X; =0,1=12,3

Xs1 oM =0¢L=0, ¢ — L =16

Xoy > oM =¢L =0, ¢ — ¢ =—0

Xsa - ¢M = d’L =0



The system is asymptotically stable in the vicinity
of these equilibrium points because, three scaler
functions V; (X1), Va(X2) and V3(X3) defined be-
low, satisfy the 4 conditions of the Liapunov
asymptotic stability, (D’Azzo and Houpls, 1981):

1 1
i(Xy) = E.JM.Xf(l) + -2—.JL.X12(2)+
ks
Th'(xl(:«;) —9)?
1 1
Va(X2) = —2-JMX22(1) + 5.J[,.X%(2)+
k—;’i.(xz(s) +6)?
1 1
Va(X3) = 5.JM.X32(1) + §.JL.X§(2)
Proof:
1)V;(X;) is continuous, its partial derivatives are
continuous at X,;.
2) Vi(X;) >0for X; # X,,,i=1, 2, 3.
3) Vi(Xy)=0,i=1,2, 3.
4)‘ VilXi) < 0for X; # X5, 1 = 1, 2, 3
Vi(X1) = —fu. X3 (1) — f.XT(4)~
fan-(X1(1) = X1(2))* <0
Va(Xs) = —fu-X3(1) — fr.X3(2)~
fsh.(XQ(l) - X2(2))2 <0
Va(Xa) = —fm-X3(1) - fr.X3(2) <0

8. APPENDIX B: PROOF OF THE
RELATION (4)

if ga(te;) = 0 and @a(tc,,,) = —0, then:
teipn
/ wa.dt + $4(0)
0
te; teiqa
= / wadt + / wa.dt + 6a(0)

0 te;

—0= ¢d(tc,'+1) =

t°i+l

= balte) a0 + [

te.

wq-dt + ¢4(0)

te.

i+1 te

i41

we.dt = 8 = -0.5 / qlﬁd.dt
te; te,
The last relation is independent of the initial con-
dition, ¢4(0). To realize the conditions ¢q(tc,) = 6
and @q(tc,,,) = —8, the input Cps is chosen to
be: Cp(t) = a.l(¢) + b.1(t —t5), b < —a. In
this relation, ¢, is the instant at which the step
response of the system becomes stable (vibrations
are finished). It can be easily shown that this input
transfers the stability point:
Xo(ts,) = [a-9sy 0.9, ;%.a.gs + )T, which (in
the phase diagram) is in the right side of the dead
zone, to another stability point:
X,(ts;) = [(a+b).gs, (a+b).gs, £=.(a+b).gs—0]"
, which is in the left side of the dead zone: This
transformation requires a passage in the dead zone
and the conditions @q(t.,) = 6 and ¢a(tc,,,) = —0
are fulfilled (see figure 5). For more simplicity, in

=6+

the paper, the notations ¢, and #; are used instead
of te, and &, ,.

9. APPENDIX C: PROOFS OF THE
RELATION (9)

Here, the criterion W,(t.) is treated. The same

operation can be applied on the other criterion
We(ts)-

tc
Wete) = D (Wi(t) — wi(te)+

t=ty
t,+8ty
3 ilt) - wite)e 1)
t=t.
for t; < t}:

Wety) = 3 i) - wito))+

t=t,

t:

S @) —wr(te)e2tt)24
t=t.
t.s+5tl

Z (WL (t*c)-e—a(t—t“:) — Wy (tc)‘e—a(t-—tc))z
t=t*,
= Err(t7) + Erra(t7) + Erra(t])

for t, =¢;:

Wt = 3 (@i t) - wi())? = Erm (£)

t=t,

and finally, for t} > ¢%:

te

We(td) = 3 (wot) —we(te)’+

t=ts
£s+0L

Z (wL(t:)e—a(t-tZ) —_ wL(tc)e_a(t"tc))2

t=t,

= Zc (wr.(t) — wi(te))? = Erm (7))

t=t,

In the relation W_.(¢}), the second sum is zero,
because t} < t. < ty + &t; < tf, thus, wr(t) =
wL(t;)e‘“(t_‘:) = wL(tc)e_a(t_ts.

By comparing the three criteria, one concludes
that:

o We(ts) > We(t:) due to the terms: Erra(t])
and Errs(t;).
o We(td) > We(ts).

Therefore, We(t.) is minimized at ¢ = t}. By
the same method, it can be shown that Wy(ts)
is minimized at t5 = ¢}.



