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 1. INTRODUCTION

Non integer order models, also known as fractional
filters, have been introduced long ago in various
fields such as electrochemistry (Ichise, et al., 1971),
acoustics (Matignon, et al., 1994), heat transfer, …
where they are fundamentally used for the modeling
of diffusive processes. Their dynamics depend on a
well-known Partial Derivative Equation and on the
geometry of the considered problem. If the attention
is focussed on the relation between variables at the
boundary region, a theoretical modeling leads to an
integrator with an order equal to ½. Generalization of
this modeling to more complex situations needs to
use a fractional model, characterized by its non
integer order, whose value can vary from 0 and 1.

The objective of this paper is the black-box modeling
of these diffusive processes, using a fractional
integrator. This new operator has already been
defined (Trigeassou, et al., 1999 ; Lin and Poinot,
1999) : it is fundamentally characterized by its
bounded spectral range and approximated by an
equivalent state-space representation depending on a
limited number of design parameters. Then, this

fractional integrator is used to define a macro state
space representation of the considered non integer
system. Finally, identification is performed by OE
classical parameter estimation, owing to the
transformation of non integer order and its spectral
range into design parameters.

The application of this black box modeling has
already been performed experimentally on different
type of diffusive systems (Lin, et al., 2000a ; Lin, et
al., 2000b ; Lin, et al., 2001a ; Lin, et al., 2001b).
Thus it is interesting in this paper to recall and to
compare the main results in order to exhibit the
capabilities of this new modeling methodology.

The paper is divided in four parts. Part 1 is devoted
to diffusive processes and their modeling by
fractional systems. In part 2, the modeling of non
integer order systems is presented with the help of a
fractional integrator and of a state-space
representation. The identification procedure is
presented in part 3. Finally in part 4, the application
of this new methodology to different types of
diffusive systems is analyzed.
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 2. DIFFUSIVE PROCESSES AND FRACTIONAL
MODELS

2.1. Diffusive processes

The diffusion of particles in a one dimensional
problem is related to two fundamental equations :
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where n represents the concentration of particles, j is
the particle current density and D is a coefficient
characterizing diffusion.

The solution of the diffusion process (n(x,t)) is
related to Partial Derivative Equation (2) and to the
particular geometry of the problem. Equation (1)
specifies the relation between j(x,t) and n(x,t), which
will be considered respectively as the input and the
output of the system when x = 0 (boundary region).

Many physical and chemical problems are based on
diffusive processes. In the part 4 of this paper, one
presents results obtained on three processes governed
by equations (1) and (2) :
− Heat transfer in materials : in this case, j is related

to the heat flux and n to the temperature.
− Electrochemical diffusion process : modeling of

the transients of a lead-acid battery. In this
example, j will be replaced by the current i and n
by the voltage v of  the battery cell.

− Electromagnetism : modeling of frequency effects
in an induction motor. In this case, j will be
replaced by the voltage of the rotor and n by the
rotoric current.

2.2. Fractional integrator, fractional model

Consider a one dimensional idealized problem (see
figure 1). j(0,t) has the same value in each point of
plane A ; plane B is insulated, i.e. j(L,t) = 0. j(0,t) is
considered as the actuator variable or input of the
system ; n(0,t) is the resulting variable or output of
the system. The objective is to define the transfer
function between n(0,t) and j(0,t).

A classical approach is to apply Laplace Transform
to equations (1) and (2). Thus, equation (2) is
equivalent to :
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Using (3), the Laplace transform of (1), and the two
boundary conditions j(0,t) and j(L,t), one get :
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Figure 1 : One dimensional problem

Then, combining (3), (4) and (5), it is straightforward
to get :
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Finally, if the semi-infinite problem where ∞→L  is
considered, then
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Equation (7) exhibits a fractional integrator whose
order n is equal to ½. Practically, n depends on the
geometry of the problem ; moreover, when plane B is
not completely insulated, then ( ) 0t,Lj ≠  and
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∞→t

t,on  finite value when a step input j(0,t)

is applied to the system. Thus K/sn has to be replaced
by :
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Equation (8) represents the fractional model of the
diffusive process at the point x = 0 (boundary
region).

 3. MODELING OF NON INTEGER ORDER
SYSTEMS

(Trigeassou, et al., 1999 ; Lin and Poinot, 1999)

3.1. Fractional integrator

Consider the Bode diagram of a modified integrator
on figure 2.
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Figure 2 : Bode diagram of the non-integer integrator



It is composed of three parts :
− The intermediate part corresponds to non integer

action, characterized by n (experiments show that
it is necessary to restrict the non integer action to a
limited fractional band).

− In the two other parts, the integrator has
conventional action, characterized by n = 1.

In this way, a new operator In(s) is defined which is a
conventional integrator, except on a limited band
[ bω , hω ] where it is acting like a "n" non integer

integrator. The operator In(s) is defined using a
fractional phase lead filter (A. Oustaloup,1995) :
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This operator is characterized by five parameters :
− 1ω′  and Nω  define the frequency range

(equivalently to bω  and hω ),

− N is the number of cells (it is directly related to the
quality of the approximation),

− α and η are recursive parameters related to non
integer order n.

This operator is completely defined by the following
relations :
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3.2. State-space representation of the operator

The pseudo-integrator is defined by (9). Practically, a
state-space representation is associated to In(s).

Because In(s) is composed of a product of cells, the
state variables are defined as the output of each cell,
according to figure 3.

Each state variable xn is only related to the preceding
xn-1 by :
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where αωω =′ −− 1n1n .

Then, considering xn+1
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The connection between these two lines is realized
by 1nn −= ωηαω . Thus, this particular state-space

representation uses only α and η, plus 1ω′  or Nω .
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So, one can write :
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Then, defining IM , IA , IB  and Ix , one can write

(where IM , IA and IB  are parsimonious

matrixes) :
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are full matrixes necessary for the numerical
simulation of the operator.

3.3. State-space representation of a non-integer
system

Principle. Using the fractional integrator operator,
the state-space model of a non-integer system can be
constructed. Consider the non integer differential
equation (with 0 < n < 1) :
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Thus, a "macro" state-space representation of this
system is associated to model (17) (with "macro"
parameters a0 and b0).
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or equivalently using the operator defined
previously :
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This "macro" model is only convenient for compact
writing. Practically, there are two imbricated state-
space representations, one for the "macro" model, the



other for the operator. Notice that Ixx =  in this

simple example.

Because uxax 1N01 +−= +� , the global state-space

model is :
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and for the observation equation :
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 4. OUTPUT ERROR IDENTIFICATION OF THE
FRACTIONAL SYSTEM

The model of the system is in continuous time
representation, thus it is preferable to use an output
error technique (OE) to estimate its parameters
(Richalet, et al., 1971).

The state-space model of the non integer system is :
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The data set is composed of K data pairs { }*
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with eTkt =  ( eT  : sampling period) ; kb  is an

output disturbance.
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The state-space model is simulated using a numerical

integration algorithm, thus one get ( )θ̂,ufŷ kk =

where θ̂  is an estimation of θ . Then, defining

output prediction error
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*
kk −= (25)

The optimal value of θ̂  ( optθ ) is obtained by

minimization of the quadratic criterion :
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Because ( )tŷ  is not linear in θ̂ , a Non Linear
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iteratively θ̂  :
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This algorithm, known as Marquardt's one
(Marquardt, 1963), insures robust convergence, even

with a bad initialization of θ̂ . Fundamentally, this

technique is based on the calculation of gradient and
hessian, themselves dependant on the numerical
integration of the sensitivity functions

i,k θσ (Richalet, et al., 1971), which are equivalent to

the regressors in the linear case.

 5. EXPERIMENTAL RESULTS

5.1. Introduction

One presents here results obtained on three diffusive
processes : electrochemical diffusion process (Lin, et
al., 2000b), heat transfer in materials (Lin, et al.,
2001a ; Lin, et al., 2001b) and electromagnetism
(Lin, et al., 2000a ; Lin, et al., 2001a).

Electrochemical diffusion process : modeling of the
transients of a lead-acid battery. Usually, the transfer
function between voltage and current of the battery is
represented by a fractional impedance, obtained by
frequential experiments. The objective is to replace
this impedance by a fractional model, derived from
classical input/output data, thus by the new black box
model :
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where 1n0 << .

Heat transfer in materials. Classically, heat transfer
systems can be modeled by RC cells connected
together as shown in figure 4. P is the source of heat
flux equivalent to a current source. inθ  is the

temperature at the boundary source and extθ  is the

fixed temperature in the enclosure.

The use of a large number of RC cells permits to take
into account the specific geometry of the system, that
is to say any fractional order. However, identification
of this model can be very difficult beyond 2 or 3
cells. So, a fractional model can be equivalently used.
The major interest is that the complexity of RC cells
is summarized by a few design parameters. The
model is also given by (28).
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Figure 4 : Modeling of the heat transfer system

Electromagnetism : modeling of frequency effects in
an induction motor. Induced currents in a conductive
volume caused by a variable magnetic field are
governed by diffusive mechanism. In concrete terms,
this mechanism is characteristic of an induction
machine, where stator windings, traversed by three-
phase currents, are the cause of induced currents in
rotor bars.

A model of fixed order equal to ½ can be used
(Retière and Ivanes, 1998) but this model is unable to
take into account the real geometry of the conductors.
Another solution is to use a model like for heat
transfer with a high number of parameters (Kabbaj,
1997) but identification of this model is difficult
beyond 3 cells. So, the modeling of the rotor
behavior is performed using a non integer impedance
given by ( 1n0 << ) :
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5.2. Identification results

Tables 1, 2 and 3 present identification results
obtained on these three processes. The parameters of
the previous models (28) (or (29)) have been
estimated using the identification technique presented
in part 3. For each process, two experiments have
been used.

One can notice that, in each case, the two
experiments lead approximately to the same
parameters, thus to the same model. On the other
hand, the value of the non integer order n is very
different from the expected theoretical value, that is
to say 0.5. Thus, n varies from 0.22 (electrochemical
system) to 0.7/0.8 ; these values are derived from
experimentation and are necessary to a good fit of the
model to real data. At the present time, no theoretical
approach has been able to explain the difference with
0.5 value : our hypothesis is that geometry of each
system is perhaps the cause of this important
difference.

Consider now values of 1ω′  and Nω . One can notice

that for the same process, values are similar ;
between processes, obtained values are different and
the spectral range of the non integer action can be
very large. Identification results show that these
parameters are not sensitive and final values of the
optimization algorithm depend highly on initial ones.
Practically, this spectral range is limited by the
sampling period of the data acquisition system and

by the time length of excitation steps. In a next
research step, it will be interesting to use this remark
in order to simplify the identification algorithm,
because 1ω′  and Nω  are not sensitive parameters.

Table 1 : Application to electrochemistry

0a 0b n 1ω′  (rd/s) Nω  (rd/s)

2.522 0.1300 0.2299 0.1549 115.64
2.531 0.1308 0.2165 0.1483 131.74

Table 2 : Application to heat transfer

0a 0b n 1ω′  (rd/s) Nω  (rd/s)

0.2318 0.0016 0.7112 0.0008 6.2831
0.2310 0.0015 0.7452 0.0003 6.2860

Table 3 : Application to electromagnetism

0a 0b n 1ω′  (rd/s) Nω  (rd/s)

12.27 4.32 0.763 0.157 106

16.91 6.03 0.865 10-8 106

5.3. Illustration example : Fractional modeling of a
lead-acid battery (Lin, et al., 2000b)

In order to illustrate our results, one presents the
fractional modeling of the lead-acid battery.
Identification results are given in table 1. As
exhibited by figure 5, there is a good fit between
measured and estimated voltage.

The harmonic responses H(jω) of the two models are
plotted on figure 6 : it is evident that the two models
are very close (same variation of magnitude, same
phase), even if there are small differences between
parameters.

In order to exhibit the role of the fractional
integrator, its Bode plots have been represented
figure 7. In the two cases, the curves are very close
and correspond to the theoretical ones, plotted on
figure 2. The same results can be verified on the
other diffusion processes. As a conclusion, the

proposed black box fractional model n
00 sab +

can be considered as a satisfying approximation of
diffusive systems either in time domain or in
frequential one.
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Figure 5 : Measured and estimated voltage
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 6. CONCLUSION

In this paper, the application of fractional modeling
and identification to three diffusive processes has
been presented and analyzed. The simulation of these
systems is performed using a fractional integrator
operator, associated to a N dimension state-space
representation. Global identification of the system is
performed by an Output Error technique.

The proposed black box fractional model is
characterized by a good fit between experiments and
predicted outputs. The harmonic responses of these
models are very close, despite some differences
between estimated parameters. Experiments show
that fractional modeling is well suited to represent
the dynamics of diffusive processes ; particularly, the
success of this approach is due to the special
fractional integrator operator with limited spectral
range.

REFERENCES

Ichise, M., Y. Nagayanagi, T. Kojima (1971). An
analog simulation of non integer order transfer
functions for analysis of electrode processes. J.
Electroanal. Chem. Interfacial Electrochem. 33,
253.

Kabbaj H. (1997). Identification d’un modèle type
circuit prenant en compte les effets de fréquence
dans une machine asynchrone à cage d’écureuil.
Thèse de doctorat, INP de Toulouse, France.

Lin, J., T. Poinot (1999). Modélisation de systèmes
d'ordre non entier. JDA'99 Journées Doctorales
d'Automatique, 53-56. Nancy, France.

Lin, J., T. Poinot, J.C. Trigeassou, H Kabbaj, J.
Faucher (2000a). Modélisation et identification
d’ordre non entier d’une machine asynchrone.
CIFA’2000, Conférence Internationale
Francophone d’Automatique, Lille, France.

Lin, J., T. Poinot, J.C. Trigeassou, R. Ouvrard
(2000b). Parameter estimation of fractional
systems : application to the modeling of a lead-
acid battery. SYSID 2000, 12th IFAC Symposium
on System Identification, USA.

Lin, J., T. Poinot, J.C. Trigeassou (2001a).
Modélisation et identification d’ordre non entier.
Applications à une machine asynchrone et à un
système thermique. JIME'2001, Journées
Identification et Modélisation Expérimentale,
pp.151-160, Nancy, France.

Lin, J., T. Poinot, J.C. Trigeassou, P. Coirault
(2001b). Parameter estimation of fractional
systems. Application to heat transfer. ECC 2001,
European Control Conference. Porto, Portugal.

Ljung, L. (1987). In : System identification - Theory
for the user (T. Kailath, Ed.). Prentice Hall.

Matignon, D., B. d'Andréa-Novel, P. Depalle, A.
Oustaloup (1994). Visothermal losses in wind
instrument : a non integer model. System and
Networks : mathematical theory and applications.
Vol. 2. Akademie Verlag.

Marquardt, D. W. (1963). An algorithm for Least-
Squares estimation of Non-Linear Parameters. J.
Soc. Industr. Appl. Math., 11(2), 431-441.

Oustaloup, A. (1995). In : La dérivation non entière :
théorie, synthèse et applications. Hermès.

Retière N., Ivanes M. (1998). Modeling of electric
machines by implicit derivative half-order
systems, IEEE Power Engineering Review, 62-64

Richalet, J., A. Rault, R. Pouliquen (1971). In :
Identification des processus par la méthode du
modèle, Gordon and Breach.

Trigeassou, J.C., T. Poinot, J. Lin, A. Oustaloup, F.
Levron (1999). Modeling and identification of a
non integer order system. ECC'99, European
Control Conference. Karlsruhe, Germany.


