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Abstract: This work proposes a predictive controller with interpolation in order to improve 
the behaviour of a typical MPC when the system presents constraints. Particularly, it is 
interesting to see how the interpolation, between the solution of the optimal unconstrained 
problem and other feasible solutions, assures the stabilit y of the system in presence of 
disturbances. The system in which the controller is applied is a two-link robot manipulator 
arm. The predictive controller is inserted in an adaptive perturbation scheme to change 
adequately the nominal inputs, given by an inverse dynamics controller, in order to reject 
the disturbances produced. The eff iciency of the proposed strategy is shown by simulation. 
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1. INTRODUCTION 
 
Traditionally, the predictive control theory has been 
applied on systems in which the dynamics are slow, 
e.g., an industrial plant. The time spent in doing the 
computation of the algorithms should not be a 
problem in these cases, where sampling rates of 
several seconds can be used. However, in order to 
implement them in a system with fast dynamics, e.g. 
a robot manipulator, some new eff icient and low 
computation time strategies must be introduced. 
 
The original MPC unconstrained problem with 
infinite horizon leads to the optimal, linear and 
quadratic solution LQ. In order to consider the 
constraints, some works (Kouvaritakis, et al., 1997; 
Scokaert and Rawlings, 1998) successfully propose 
several sub optimal strategies, based on reducing the 
dimension of the problem N. The drawback of these 
strategies is that high values of N are needed in order 
to get a feasible solution, so the computational load 
of the algorithm strongly increases. Recently, some 
strategies based on interpolations between the LQ 
solution and the “mean level” (ML) or the “tail ” 
solutions are proposed (Kouvaritakis, et al., 1998; 
Rossiter, et al., 1998). However, they have some 
drawbacks. For the first algorithm, referred as LM 
(LQ+ML), cost function convergence is not 
guaranteed, so the system can result unstable. The 

second algorithm, referred as LT (LQ+Tail ), presents 
robustness problems when uncertainty in the model 
is present or in the presence of disturbances, because 
they can make the tail unfeasible. This leads to an 
unfeasible solution and causes closed-loop 
instabilit y. In the work of Méndez, et al. (2000), 
these algorithms are improved by interpolating 
between the three solutions: LQ, ML and the tail 
(this strategy will be referred as LMT: 
LQ+ML+Tail ). The optimisation process leads to a 
two dimensional quadratic problem. This algorithm 
presents convergence, optimality, feasibilit y and 
better robustness properties with respect to 
disturbances than the other formulations. 
 
In this work the implementation of the LMT 
algorithm on a two-link manipulator robot arm is 
performed. The goal is to drive the links along some 
planned trajectories by inserting the system in an 
adaptive perturbation scheme.  
 
 

2. ROBOT MODEL  
 
The model of the robot arm used in this work is 
obtained from the second and third link of a PUMA 
robot arm (see figure 1). The dynamics of this system 
are represented by the following set of high non-
linear and coupled differential equations: 
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being � 	� 	tD �  the inertia matrix, 
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tth �� �,  the 

Coriolis and centrifugal force vector, 
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gravitational force vector and � � Ttututu )()()( 21
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the applied torque to each link. The parameters of the 
links considered in this work are 5.0 kg and 4.5 kg 
for the masses of the links and 0.43 m for its lengths. 
 
 

3. CONTROL SCHEME 
 
The control technique applied here is based on the 
scheme shown in figure 2. This method uses a 
linearisation of the model around the desired (or 
nominal) trajectory. Then, the torque applied to the 
link has two contributions: a direct contribution, 
calculated from the inverse dynamics equations; and 
a feedback contribution, where a linear controller, 
using the linearised model of the plant, tries to 
correct the deviations from the nominal trajectory. 
The non-linear control problem of the robot arm is 
then reduced to a linear control problem with respect 
to a nominal trajectory. In this paper, a local 
linearisation, described in the next section, is used to 
obtain the linearised model of the robot manipulator 
at each instant of time. On the other hand, a 
predictive controller with interpolation is used to 
compute the feedback command contribution. 

 
Fig. 1. PUMA robot arm from 560 series. 
 
 

 
Fig. 2. Adaptive perturbation controller. 

4. MODEL LINEARISATION 
 
In order to apply the predictive control algorithms 
presented in this work, a linear model of the system 
is needed. In this case, a local li nearisation is used. 
An approximate linear model of the non-linear 
system, valid for deviations of the trajectory with 
respect the nominal one, is obtained at each point.  
 
To obtain it, consider the following state variables: 
 

 
2423

1211 �� ��
���� ��

xx

xx
 (2) 

 
where 

�
1 and 

�
2 are respectively the angles of the two 

links. In vector notation, we have: 
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with � � Txxxx 4321
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and being fi(x,u) scalar functions. Computing a first 
order Taylor expansion, considering the current 
manipulator state as the equili brium point, the 
following equation is obtained: 
 
 uxx ��� BA ���  (4) 
 
where A and B are the state matrixes of the 

approximated linear model, � � Tuu 21
�u  are the 

applied torques to the system and � u are the 
deviations with respect to the nominal torque UN. 
These nominal torques are computed using the 
inverse dynamics equations (by using the Newton-
Euler recursive algorithm) and they are the inputs 
needed to reach the next point of the planned 
(nominal) trajectory. This linear approximation is 
valid for the trajectory deviations with respect to the 
nominal one, obtained by means of a trajectory 
planner.  
 
Then, the inputs applied to the system are given by: 
 
 kkk uUu N ���

,  (5) 

 
where � uk are the feedback torques computed by the 
predictive control algorithms proposed in next 
section. If the current state of the arm and the next 
desired state are given, the algorithm gives the 
appropriate inputs to achieve it. 
 
 

5. CONTROL ALGORITHMS BASICS 
 
Let kx  be the state vector of the system at time 

instant k and ku  the input vector at the same instant. 

The control problem is to find the input sequence that 
minimizes the following cost function: 
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with constraints: 
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where the sub-indices min and max refers to the 
minimal and maximum values of each variable. The 
linear model of the system, needed to compute the 
predictions for the inputs, is added as an equality 
constraint.  
 
 
5.1  LQ controller 
 
The control law for this controller is given by: 
 
 kLQk K xu (( -)  (9) 

 
where the gain LQK  is obtained by considering the 

minimisation of (1), subject to the constraints (2) and 
(3), by using a Ricatti formulation (Lewis, 1984). 
 
 
5.2  LM controller: interpolating the LQ solution 
with a feasible solution 
 
The strategy of the predictive controller consists of 
computing the input sequence { ui,} at each sample 
time that minimizes (6). Once the optimisation is 
performed, only the first input value of the sequence 
u0 is applied and the procedure is repeated at the next 
sample time. Without constraints, the optimisation 
leads to the LQ solution, uLQ. This solution is optimal 
if it is feasible. 
 
Let’s call mean level solution, uML , to the solution 
obtained by considering the minimisation of the cost 
function (6) when the weight of the command, R, is 
much higher than the weight of the state Q. In this 
way, the feasibilit y of the solution is always 
guaranteed. The LM algorithm consists of doing an 
interpolation between the LQ solution and the ML 
solution as follows: 
 * +

, , ,1-k LM k LQ k ML( ,-( ,.() /u u u  , 0 0  1  0  1 (10) 
 

and doing the minimisation of (6) with respect to 2
uk,LM  in order to compute the 3  value. To use this 

algorithm, a division of the initial state is done: 
 

 x0 = w0 + z0 (11) 
 

with 
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The predictions for the input are given by: 
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where KLQ is the gain obtained from the optimal 
control problem without constraints and KML is the 
gain corresponding to the ML problem. Moreover, 7

LQ=A-BKLQ and 
7

ML=A-BKML, where A and B are the 
state matrixes corresponding to the system (4). 
 

5.3  LMT Algorithm: two-dimensional interpolation 
 
The previous algorithm has a main drawback: it does 
not assure the convergence of the cost function, so 
stabilit y problems may occur. To solve this problem, 
the addition of the “tail ” to the previous interpolation 
algorithm is proposed. Firstly, the concept of “ tail ” is 
introduced. In the current instant of time, the tail of 
the optimal input sequence ui is: 
 
 8 9 ,...2,1, $$ iuu itail  (14) 

 
this is, all expect for the first value u0. As utail 
belongs to a feasible control law that minimises J, it 
is a feasible sub optimal solution for the input in the 
next instant of time. So this solution can be added to 
the solution of the previous algorithm by defining the 
solution: 
 * +

, , ,1- -k LMT k LQ tail k ML( ,;:<( ,=( :>() / /u u u u   (15) 

 
where 0 0  1  0  1 ,  0 0  ?  0  1  and  0 0  1 + ?  0  1. 
 
The minimisation of the cost function (6) is done 
with respect to 

2
uk,LMT in order to obtain the 

interpolation parameters 1  and ? . In this case, the 
initial state of the system x0 is divided in three sub-
states: 
 

 x0 = w0 + z0 + v0 (16) 
 
with: 
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and the predictions to the commands are given by: 
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being KLQ, KML, 

7
LQ and 

7
ML as in the previous case. 

This algorithm presents the following four desirable 
properties: convergence of the cost function, stabilit y 
of the closed-loop system, feasibilit y and robustness 
against model uncertainties and/or disturbances. 
 
 
5.4 Algorithm scheme  
 
A general algorithm description is presented below. 
 
Step 1) Set the sample time T and the final time of 

simulation finalT . Set k = 0. 

Step 2) Compute the nominal trajectory and apply 
the inverse dynamics controller to compute 
the nominal inputs , , 1,2,...k k $NU . 

Step 3) k = k + 1 
 

Step 4) Compute the linearised model of the system 
(matrices A and B) by using the current 
state, kx , and the applied inputs, 1Fku . 

 



Step 5)  
Case i ) LQ controller. G Compute LQK  from the unconstrained 

LQ problem using the weight matrices 
Q and R from (20). G Compute ku

H
 by using (9). 

Case ii ) LM controller. G Compute LQK  and MLK  from the 

unconstrained LQ problem and, for the 
ML problem, using much more strong 
weights in R than in Q. G Solve the linear programming problem 
(13) in order to compute I . G Compute ku

H
 by using (10). 

Case iii ) LMT controller. G Compute LQK  and MLK  as in case ii . G Solve the quadratic programming 
problem (18) in order to compute I  
and J . G Compute ku

H
 by using (15). 

Step 6) Form the input ku by applying (5). 

Step 7) GO Step 3 WHILE kT< finalT  

 
The main on-line steps in the method are the 
computation of the matrices of the linearised model 
and the output of the predictive controller. 
Obviously, they have to be executed faster than the 
sampling time T.  
 
A suitable value for this parameter is T=10 msec. 
The linearisation takes nearly 2 msec. Solving the 
unconstrained LQ problem, and the linear 
programming problem (if LM is considered) or the 
quadratic programming problem (if LMT is used), do 
not take much time if these routines are coded in an 
eff icient manner (less than 6 msec). Thus T is large 
enough for the computations to take place. 

6.  RESULTS 
 
The aim of this work is the implementation of the 
LMT predictive control algorithm on a two-link 
robot manipulator, and compares the results with 
those obtained from the LQ unconstrained optimal 
controller and with the LM controller. In the different 
simulations, the system is affected by an additive 
step perturbation on the state of each link with the 
same amplitude. In this case, only constraints in the 
inputs are considered. These constraints are: 
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where the sub-indices 1 and 2 indicates respectively 
the links 1 and 2. 
 
 
6.1  LQ Controller 
 
First, the controller described in 5.1 is considered. 
The weight matrices Q and R used in the 
minimisation of (6) are presented in equation (20).  
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The results obtained for the first link are shown in 
figure 3. The nominal contribution UN to the input 
provides the necessary inputs to carry the link close 
to the desired trajectory (dotted line). When the 
perturbation affects to the system, this results 
unstable due to input constraints (8). Saturation of 
the applied inputs occurs to both links, so the system 
becomes unstable. 
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Fig. 3. LQ optimal controller applied on the two-link robot arm: evolution of the robot (left column) and 
resulting torques (rigth column). System affected by an additive disturbance between t=3.2 sec and t=3.4 sec.  
 



6.2  LM Controller 
 
Secondly, the control algorithm described in 5.2, 
based on an interpolation between LQ and ML 
solution, is used. The results obtained with this 
controller are shown in figure 4. The manipulator 
tries to reach the nominal trajectory after disturbance 
is produced. Input torques to the links always take 
values under the highest permitted ones. As shown, 
instabilit y  is  avoided .  As  it  can  be  seen,  the  LQ  

control law is applied as far as the disturbance is 
produced. In this moment, the parameter T  varies 
from 0 to a higher value (see figure 6). The control 
law tends to the ML solution in order to get a better 
performance of the links without violation of the 
constraints. When the disturbance stops, the LQ 
solution is recovered because it becomes feasible 
again. The trajectories of both links tend to the 
respective nominal trajectories. The cost measured in 
this case is J=36442.  
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Fig. 4. LM controller applied on a two-link robot arm: evolution of the robot (left column) and resulting torques 
(right column). System affected by an additive disturbance between t=3.2 sec and t=3.4 sec.  
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Fig. 5. LM controller applied on a two-link robot arm: evolution of the robot (left column) and resulting torques 
(right column). System affected by an additive disturbance between t=0.75 sec and t=0.95 sec.  
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Fig. 6. Evolution of the parameter U  for the 
simulation of f igure 4. 
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Fig. 7. Evolution of the parameters U  and V
 for the simulation of f igure 8. 
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Fig. 8. LMT controller applied on the two-link robot arm: evolution of the robot (left column) and resulting 
torques (right column). System affected by an additive disturbance between the instants 1.0 sec. and 1.2 sec.  
 
 
6.3  LMT Controller 
 
Finally, the algorithm described in section 5.3 is 
considered. The performance of the system is similar 
to the previous case. The additive disturbance moves 
the system away from the desired trajectory. Once 
the disturbance stops, the algorithm recovers the 
nominal trajectory without any constraint violation. 
The cost measured in this case is J=35757. A 
reduction of 1.9% is obtained with respect the 
previous algorithm. 
 
LMT algorithm assures an eff icient behaviour of the 
system even when the LM algorithm fails. Figures 5 
and 8 show a situation where the disturbance is 
applied between the instants t=0.75 sec and t=0.95 
sec. The LM controller becomes infeasible once the 
disturbance is applied. Saturation of the input is 
produced and the system results unstable. However, 
with the LMT controller, both links tend eff iciently 
to the desired trajectory once the disturbance stops. 
Input saturation is not observed, and then the system 
keeps stable during the simulation. Evolution of the 
parameters W  and X  can be seen in figure 7. 
 
 

CONCLUSIONS 
 
The aim of this work is to implement an eff icient 
predictive controller, based on interpolating the 
optimal solution with feasible solutions, in a two-link 
robot manipulator. The control strategy is used with 
an adaptive perturbation scheme: a linear control 
law, which tries to beat off disturbances applied on 
the system, corrects the inputs computed by the 
application of inverse dynamics. This correction is 
carried out, in this case, by the LMT predictive 
controller. Advantages of this algorithm are its 
simplicity and the low computational cost. The 
optimisation is reduced to a quadratic programming 
problem. A linear model of the system is needed for 
the application of this algorithm. This linearisation 
was done at each point of the trajectory.  
 

The results obtained show the advantages of LMT 
algorithm, with respect to the other strategies. The 
LQ and LM algorithms present feasibilit y problems, 
producing instabilit y by command saturation, in 
presence of disturbances. However, the LMT 
algorithm rejects the disturbances without input 
constraints violations in the system. In this way, the 
system remains stable along the planned trajectory. 
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