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DISTURBANCESREJECTION ON A ROBOT ARM
USING AN EFFICIENT PREDICTIVE CONTROLLE R
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Abstrad: Thiswork propaoses a predictive controller with interpolation in order to improve
the behaviour of a typicd MPC when the system presents constraints. Particularly, it is
interesting to seehow the interpolation, between the solution d the optimal unconstrained
problem and aher feasible solutions, asaures the stability of the system in presence of
disturbances. The system in which the controller is applied is a two-link roba manipulator
arm. The predictive cntroller is inserted in an adaptive perturbation scheme to change
adequately the nominal inpus, given by an inverse dynamics cortroller, in order to rejec
the disturbances produced. The dficiency of the propased strategy is shown by simulation.
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1. INTRODUCTION

Traditionally, the predictive control theory has been
applied on systems in which the dynamics are slow,
e.g., an induwstrial plant. The time spent in ddang the
computation o the dgorithms doud na be a
problem in these caes, where sampling rates of
several seconds can be used. However, in order to
implement them in a system with fast dynamics, e.g.
a roba manipulator, some new efficient and low
computation time strategies must be introduced.

The origina MPC unconstrained problem with
infinite horizon leads to the optimal, linea and
quadratic solution LQ. In order to consider the
constraints, some works (Kouvaritakis, et al., 1997
Scokaert and Rawlings, 1998 succes<ully propose
severa sub opimal strategies, based onreducing the
dimension d the problem N. The drawbad of these
strategiesis that high values of N are needed in order
to get a feasible solution, so the computational 1oad
of the dgorithm strondy increases. Recantly, some
strategies based on interpaations between the LQ
solution and the “mean level” (ML) or the ‘“tail”
solutions are proposed (Kouvaritakis, et al., 1998
Rosster, et al., 1999. However, they have some
drawbadks. For the first algorithm, referred as LM
(LQ+ML), cost function conwvergence is not
guaranteed, so the system can result unstable. The

semndalgorithm, referred as LT (LQ+Tail), presents
robustness problems when urcertainty in the model
is present or in the presence of disturbances, becaise
they can make the tail unfeasible. This leals to an
unfessible solution and causes closed-loop
instability. In the work of Méndez et al. (2000,
these dgorithms are improved by interpolating
between the three solutions: LQ, ML and the tail
(this drategy will be referred as LMT:
LQ+ML+Tail). The optimisation process leals to a
two dmensional quadratic problem. This algorithm
presents convergence optimality, feasibility and
better robustness properties with resped to
disturbances than the other formulations.

In this work the implementation o the LMT
algorithm on a two-link manipulator roba arm is
performed. The goal is to drive the links along some
planned trajedories by inserting the system in an
adaptive perturbation scheme.

2. ROBOT MODEL

The model of the roba arm used in this work is
obtained from the seacond and third link of a PUMA
roba arm (seefigure 1). The dynamics of this g/stem
are represented by the following set of high non
linea and coupled dfferential equations:



u(t) = D)) +hlek). o))+ o) ()

being D(A(t)) the inertia matrix, h(é?(t),é(t)) the
Coriolis and centrifugal force vedor, c((t)) the

gravitational force vedor and u(t) =[u,(t) u,(t)]

the gplied torque to ead link. The parameters of the
links considered in this work are 5.0 kg and 45 kg
for the masses of thelinksand 043 m for its lengths.

3. CONTROL SCHEME

The antrol technique gplied here is based on the
scheme shown in figure 2. This method ses a
lineaisation d the model around the desired (or
nominal) trajedory. Then, the torque gplied to the
link has two contributions: a dired contribution,
cdculated from the inverse dynamics equations; and
a fealbad contribution, where alinea controller,
using the lineaised model of the plant, tries to
corred the deviations from the nomina trajedory.
The nonlinea control problem of the roba arm is
then reduced to alinea control problem with resped
to a nomina trgedory. In this paper, a locd
lineaisation, described in the next sedion, is used to
obtain the lineaised model of the roba manipulator
a ead instant of time. On the other hand, a
predictive controller with interpolation is used to
compute the feedbad command contribution.
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Fig. 1. PUMA roba arm from 560 series.
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Fig. 2. Adaptive perturbation controll er.

4. MODEL LINEARISATION

In order to apply the predictive control algorithms
presented in this work, a linea model of the system
is needed. In this case, a locd lineaisation is used.
An approximate linea model of the nonlinea
system, valid for deviations of the trajedory with
resped the nominal one, is obtained at ead pdnt.

To oltain it, consider the foll owing state variables:

X =0, Xy =6,

)

X =0, X, =0,
where 6, and 6, are respedively the angles of the two
links. In vedor notation, we have:

X = F(%X, X0, X3, X4) (3

with x=[x % X X', F=[f, f, f53 f,],
and keing fi(x,u) scdar functions. Computing a first
order Taylor expansion, considering the aurrent
manipulator state @& the euilibrium paint, the
following equation is obtained:

S% = Ak + Bu ()

where A and B are the state matrixes of the
approximated linea model, u=[u; u,]" are the

applied torques to the system and du are the
deviations with resped to the nominal torque Uy.
These nomina torques are @mputed using the
inverse dynamics equations (by using the Newton-
Euler reaursive dgorithm) and they are the inpus
needed to read the next point of the planned
(nominal) trajedory. This linea approximation is
valid for the trajedory deviations with resped to the
nominal one, obtained by means of a trgedory
planner.

Then, the inpus applied to the system are given by:

U =Up k Uk %)

where duy are the feedbadk torques computed by the
predictive ntrol agorithms proposed in next
sedion. If the aurrent state of the am and the next
desired state ae given, the dgorithm gives the
appropriate inpus to achieveit.

5. CONTROL ALGORITHMSBASICS

Let x, be the state vedor of the system at time
instant k and u, the inpu vedor at the same instant.

The ontrol problemisto find the inpu sequence that
minimizes the foll owing cost function:

J= (xLka +u‘kRuk) (6)

o
k=0

with constraints:



Xk+1:AXk+Buk (7)
Xi,minSXi SXi,max ’ i=1,...,ﬂ (8)
ui,mingui Sui,max , i :].....,m

where the sub-indices min and max refers to the
minimal and maximum values of ead variable. The
linead model of the system, needed to compute the
predictions for the inpus, is added as an equality
constraint.

5.1 LQ controller
The mntrol law for this controller is given by:

AUy =-KqdXk ©)

where the gain K, is obtained by considering the

minimisation d (1), subjed to the cnstraints (2) and
(3), by using a Ricati formulation (Lewis, 1984).

5.2 LM controller: interpalating the LQ solution
with afeasible solution

The strategy of the predictive ntroller consists of
computing the input sequence {u;,} at eadh sample
time that minimizes (6). Once the optimisation is
performed, only the first inpu value of the sequence
Uo isapplied and the procedure is repeded at the next
sample time. Withou constraints, the optimisation
leads to the LQ solution, U q. This Slutionis optimal
if itisfeasible.

Let's cdl mean level solution, uy, , to the solution
obtained by considering the minimisation d the cost
function (6) when the weight of the command, R, is
much higher than the weight of the state Q. In this
way, the feasibility of the solution is aways
guaranteed. The LM agorithm consists of doing an
interpolation between the LQ solution and the ML
solution as foll ows:

Sup iy =(1-a)du, o +adu,,, ,0<a<l (10

and dang the minimisation d (6) with resped to
dug m in order to compute the o value. To use this
algorithm, adivision d theinitial stateis dore:

Xo = Wo + Zo (1D
with

W, = (1- )X

o ( 0‘)0 (12)

Zy =Xy

The predictions for the inpu are given by:
§uk,LM = _KLQ¢EQWO - KML¢I\I;ILZO (13)

where K g is the gain oltained from the optimal
control problem withou constraints and Ky is the
gain correspondng to the ML problem. Moreover,
@_Q:A-BKLQ and ¢|\/||_:A-BKM|_, where A and B are the
state matrixes correspondng to the system (4).

5.3 LMT Algorithm: two-dimensiond interpolation

The previous agorithm has amain drawbadk: it does
not assure the mnvergence of the st function, so
stability problems may occur. To solve this problem,
the aldition o the “tail” to the previous interpolation
agorithm is proposed. Firstly, the cncept of “tail” is
introdwced. In the aurrent instant of time, the tail of
the optimal inpu sequencey; is.

Uit = Ui}, 1=12,... (14)
this is, all exped for the first value Uy AS Uy
belongs to a feasible cntrol law that minimises J it
is afeasible sub ogima solution for the inpu in the
next instant of time. So this slution can be alded to
the solution d the previous algorithm by defining the
solution:

OUy :(1_a_ﬂ)5uk,LQ +0a0Uy; + Uy (15)

where0< a<1, 0<B<1 and 0< a+B< 1.

The minimisation o the st function (6) is dore
with resped to dux wr in oder to oban the
interpolation parameters o and S. In this case, the
initial state of the system X is divided in three sub-
states:

Xo = Wo + Zo + Vo (16)
with:

Wo = (1—a = B)Xo + BhLqWa
Zp=ax (17
Vo = ﬂ(xo - ¢LQW-1)

and the predictions to the commands are given by:
AU vt = 'KLQ¢Ii_<QWO - K (20 + o) (18)

being Kiq, KuL, ¢o and ¢u as in the previous case.
This algorithm presents the following four desirable
properties. convergence of the st function, stability
of the dosed-loop system, feasibility and robustness
against model uncertainties and/or disturbances.

5.4 Algorithm scheme
A genera algorithm descriptionis presented below.

Step 1) Set the sample time T and the final time of
simulation T, - Setk=0.

Step 2) Compute the nominal trajedory and apply
the inverse dynamics controll er to compute
the nominal inpus Uy ,, k=12,...

Step 3 k=k+1

Step 4 Compute the lineaised model of the system

(matrices A and B) by using the airrent
state, x, , andthe gplied inpus, u,_; .



Step 5)
Casei) LQ cortroller.

» Compute K o from the unconstrained

LQ problem using the weight matrices
Q and R from (20).
= Compute ou, by using (9).
Caseii ) LM cortroller.
= Compute Ko and Ky, from the

unconstrained LQ problem and, for the
ML problem, using much more strong
weightsin Rthanin Q.

= Solve the linea programming poblem
(13) in order to compute « .

= Compute ou, by using (10).

Caseiii ) LMT cortroller.
= Compute K o and K, asincaseii.

= Solve the quadratic programming
problem (18) in order to compute «
and 5.

= Compute ou, by using (15).
Step 6) Formtheinput u, by applying (5).
Step 7) GO Step 3WHILE KT<T 4

The main online steps in the method are the
computation o the matrices of the lineaised model
and the output of the predictive cntroller.
Obvioudly, they have to be exeauted faster than the
samplingtime T.

A suitable value for this parameter is T=10 msec
The lineaisation takes nealy 2 msec Solving the
unconstrained LQ problem, and the linea
programming problem (if LM is considered) or the
quadratic programming problem (if LMT is used), do
not take much time if these routines are cded in an
efficient manner (lessthan 6 msed). Thus T is large
enoughfor the mmputations to take place

Angle (rad)

6. RESULTS

The am of this work is the implementation d the
LMT predictive cntrol agorithm on a two-link
roba manipulator, and compares the results with
those obtained from the LQ unconstrained optimal
controller and with the LM corntroller. In the diff erent
simulations, the system is affeded by an additive
step perturbation onthe state of ead link with the
same amplitude. In this case, only constraints in the
inpus are wnsidered. These @nstraints are;

|Uk’1| <90 N-m 19
2| <15 N-m 19

where the sub-indices 1 and 2 indicates respedively
thelinks 1 and 2

6.1 LQ Controller

First, the controller described in 5.1 is considered.
The weight matrices Q and R used in the
minimisation d (6) are presented in equation (20).

1500 0 0 O
0 20 0 O 01 O
= , R= (20
0 0 500 0 0 01
0O 0O 0 5

The results obtained for the first link are shown in
figure 3. The nomina contribution Uy to the inpu
provides the necessary inpus to cary the link close
to the desired trgjedory (dotted linge). When the
perturbation affeds to the system, this results
unstable due to inpu constraints (8). Saturation d
the gplied inpus occurs to bah links, so the system
becomes unstable.

Torque (N*m)

Fig. 3. LQ optimal controller applied onthe two-link roba arm: evolution d the roba (left column) and
resulting torques (rigth column). System affeded by an additive disturbance between t=3.2 sec andt=3.4 sec.



6.2 LM Controller

Seoondy, the ontrol algorithm described in 5.2,
based on an interpolation between LQ and ML
solution, is used. The results obtained with this
controller are shown in figure 4. The manipulator
tries to read the nominal trajedory after disturbance
is produwced. Input torques to the links aways take
values uncer the highest permitted ores. As $own,
instability is avoided. As it can be seen, the LQ

Angle (rad)

Angle (rad)

o 1 2 3 4 5 6

control law is applied as far as the disturbance is
produwced. In this moment, the parameter « varies
from O to a higher value (seefigure 6). The cntrol
law tends to the ML solution in order to get a better
performance of the links withou violation d the
constraints. When the disturbance stops, the LQ
solution is recovered becaise it becomes feasible
again. The tragedories of both links tend to the
respedive nominal trgjedories. The @st measured in
thisceseis F36442

2

-4
o 1 2 3 4 5 6

Fig. 4. LM controller applied onatwo-link roba arm: evolution d the roba (left column) and resulting torques
(right column). System aff eded by an additi ve disturbance between t=3.2 sec andt=3.4 sec
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Fig. 5. LM controller applied onatwo-link roba arm: evolution d the roba (left column) and resulting torques
(right column). System affeded by an additi ve disturbance between t=0.75 sec axd t=0.95 sec
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Fig. 6. Evolution d the parameter o for the
simulation d figure 4.
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Fig. 7. Evolution d the parameters o and
f for the simulation o figure 8.
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Fig. 8. LMT controller applied onthe two-link roba arm: evolution d the roba (left column) and resulting
torques (right column). System aff eded by an additi ve disturbance between the instants 1.0 sec and 12 sec

6.3 LMT Controller

Finaly, the dgorithm described in sedion 53 is
considered. The performance of the system is smilar
to the previous case. The alditive disturbance moves
the system away from the desired trgedory. Once
the disturbance stops, the dgorithm recovers the
nominal trajedory withou any constraint violation.
The st measured in this case is F35757 A
reduction d 1.9% is obtained with resped the
previous algorithm.

LMT agorithm asaures an efficient behaviour of the
system even when the LM algorithm fails. Figures 5
and 8 show a situation where the disturbance is
applied between the instants t=0.75 sec and t=0.95
sec The LM controller beaomes infeasible once the
disturbance is applied. Saturation d the inpu is
produced and the system results unstable. However,
with the LMT controller, both links tend efficiently
to the desired trgjedory once the disturbance stops.
Inpu saturation is not observed, and then the system
kegps gable during the simulation. Evolution d the
parameters ¢ and g can be seeninfigure 7.

CONCLUSIONS

The am of this work is to implement an efficient
predictive ntroller, based on interpolating the
optimal solution with feasible solutions, in atwo-link
roba manipulator. The ntrol strategy is used with
an adaptive perturbation scheme: a linea control
law, which tries to bea off disturbances applied on
the system, correds the inpus computed by the
application d inverse dynamics. This corredion is
caried ou, in this case, by the LMT predictive
controller. Advantages of this agorithm are its
simplicity and the low computational cost. The
optimisation is reduced to a quadratic programming
problem. A linea modd of the system is needed for
the gplicaion o this algorithm. This lineaisation
was dore & ead pant of thetrgjecory.

The results obtained show the alvantages of LMT
agorithm, with resped to the other strategies. The
LQ and LM agorithms present feasibility problems,
prodwing instability by command saturation, in
presence of disturbances. However, the LMT
agorithm rgjeds the disturbances withou inpu
constraints violations in the system. In this way, the
system remains dable dongthe planned trgjedory.
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