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Abstract: A hybrid sliding mode control strategy for a class of second order systems
is presented in this paper. It is characterized by an even t—driv emgain reduction
mechanism relying on a decomposition of the system state into regions. By enforcing
sliding mode behaviors on a suitable set of sliding manifolds, while avoiding the
generation of limit cycles, the proposed strategy proves to globally asymptotically
stabilize the origin of the system state space.Copyright 2002 IFA C
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1. INTRODUCTION

Sliding mode con trol (SMC) systems, to which
a large number of w orkshas been devoted dur-
ing the past tw odecades (Utkin, 1992; Hung et
al., 1993; DeCarlo et al., 1998; Edwards and Spur-
geon, 1998), are, intrinsically ,“h ybrid systems”
in the sense that the con trol design relies on a
state space decomposition through a border, the
so—called sliding manifold, which is a linear or
nonlinear function of the full system state, so that
the control la w is switdied on crossing it. Yet, they
do not fit the intuitiv eidea the researchers have
of hybrid systems (Morse et al., 1999), since the
key point in the theory of SMC systems is to force
the state trajectory not to instantaneously cross
the commutation manifold as expected in classical
hybrid systems, but to slide on it. Indeed, in this
w aythe desired dynamical features turn out to
be assigned to the controlled system.

The aim of the present paper is to design and
analyze a truly hybrid SMC strategy for a class
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of second order systems which relies on a peculiar
system state decomposition into countable regions
by means of a grid of conven tional sliding mani-
folds, and a set of nested switching boundaries.
Each region is a “block” in the sense used in
(Caines and Wei, 1997), and a bloc k—iwariant
control gain is associated with it. On the whole,
the choice of the control gains corresponding to
the blocks included betw een t wswitching bound-
aries (note that also infinity and the origin of the
state space can be interpreted in this w ay)con-
curs to the attainment of the objective of either
reac hing a particular sliding manifold, or crossing
the switching boundary closer to the origin.

As long as the state trajectory crosses a switching
boundary, a gain variation is generated. More pre-
cisely, a state evolution approching the state space
origin tends to determine, on crossing switch-
ing boundaries closer to the origin, a reduction
of the control gain. In contrast to (Bartolini et
al., 1998; Gessing, 2001), where a continuous vari-
ation of the gain is generated, in the present
proposal the gain reduction mechanism is event—
driven and asyncronous in time. Most impor-
tan tly, it does not require that the state is eolving
along a sliding manifold, being activ eeven dur-



ing the reaching phases. The overall hybrid SMC
strategy with gain reduction proves to globally
asymptotically stabilize the origin of the system
state space, in spite of the presence of a bounded
uncertain term in the system model.

The motivation for using SMC to design a hybrid
strategy mainly relies on the appreciable features
of the SMC metodology, such as simplicity and
robustness versus matched uncertainties and dis-
turbancies, which are naturally inherited by the
proposed control approach. Note that, the com-
bination of SMC with hybrid control has already
been investigated in (Bartolini et al., 1999b) and
(Bartolini et al., 1999a). Yet, the control strategies
proposed in such papers are characterized by a
continuous adaptation of the control gain, and
switching is driven by a logic relying on the de-
composition of the sliding variable phase plane,
rather than of the original system state space,
which can appear less intuitive as far as the con-
trol laws design is concerned. Rather, the present
paper can be viewed as a development of (Ferrara
et al., 2001) in which a hybrid SMC strategy is
designed through the decomposition of the system
state space into a couple of regions, and no gain
reduction mechanism is implemented.

The present paper is organized as follows. The
next section is devoted to the problem formula-
tion. In Section 3 the formal description of the
proposed control strategy is addressed. The anal-
ysis of its stability and convergence properties is
carried out in Section 4. Finally, in Section 5, a
simple example is reported.

2. PROBLEM FORMULATION

Consider the second-order nonlinear continuous-
time dynamic system in controllable canonical
form

&(t) = f(x(t)) + gu(t) (1)

where z(0) = Z, x = [z; 3] € R? is the state
vector, f(z) = [z2 f(x)] € R?, with f(z(t))
uncertain but such that

|[Fx(®)] <&, (2)

k being a positive constant, is a Lipschitz vector
function such that the uncontrolled system z(t) =
f(z(t)) has a single insulated equilibrium point
at the origin, u € R! is a scalar control variable
which influence the state vector linearly through
the constant vector ¢ = [0 g]’, where, without
loss of generality, g is supposed to be a positive
constant.

Assume that the maximum amplitude of the con-
trol variable w is varied in different regions Q*(z),

it =1,...,v, of the state space, bounded by nested
switching boundaries @;, i = 1,...,v + 1, defined
by ¢i(z) = 0, where

vi(z) =2’ Pix — ¢ (3)
with P, = P! = diag{pi,,pi,} > 0. Note that

also infinity and the origin of the state space can
be interpreted as switching boundaries, letting

(\/;71, \/;:) tend to (00, 00) and to (0,0), for

1 =1and i = v + 1, respectively. Specifically,

(@) = {2 : pira(z) >0 N pi(z) <0} (4)

i=1,...,v+ 1, with the observation that Q°(z),
and Q*1(x) are empty set, therefore neglected in
this treatment.

Moreover, the following constraint on the control
amplitude is considered

|ui|>|ui+1|> i:l,...,l/—]_ (5)
u; being the value assumed by the control variable
u in the region Q(z). Clearly, (5) corresponds to
a control gain reduction, as the state trajectory
moves through regions closer to the origin of the
state space, driven by the event of crossing a

switching boundary.

The control problem in question is to design a
hybrid control strategy, taking into account the
constraint (5), so as to make the origin of the
state space be a globally asymptotically stable
equilibrium point of the controlled system.

3. THE HYBRID SLIDING MODE
CONTROLLER

With reference to the regions Q%, i = 1,...,v,
introduce the linear functions

0i(z) = T3 + oz (6)
a;—1 > a; >0,1=2,...,v, and the correspond-
ing sliding manifolds ¢;(z) =0,i=1,...,v.

Then, according to the SMC theory, define the
hybrid control law

u=—K;sign(o;(x)), K;>0 (7)
when z € Qi(z), i = 1,...,v, where K; has
to be designed so that the reaching condition
oi(z)6i(z) < 0 is fulfilled in QF(z).

As usual in SMC control (Utkin, 1992), the
switching functions o;(z), i = 1,...,v, are se-
lected so that when the state of system (1) is re-
stricted to lay on the sliding manifolds, the system
dynamics exhibits the desired behavior. A further
requirement, in the present case, is determined by



the constraint on the control amplitude given by
(5). To comply with it, define

max||gn | < Diy i= 100 (8)
T

D; being a positive constant, and @;_ being a point
of the i—th switching boundary ;. Note that,
by virtue of the assumption of nested switching
boundaries, D; > D41, ¢ = 1,...,v. Then,
determine

1
Ki==(k+aDy), i=1,...,v (9
g

As it is well known, see e.g. (Branicky, 1988),
a hybrid strategy where the controller switches
between different control laws can result in an
overall unstable closed—loop system even if each
control law is designed so as to guarantee stability.
So, the proposed hybrid SMC strategy does not
guarantee by itself the global asymptotic stability
of the origin of the controlled system state space,
but some further conditions on the gains Kj;
must be imposed. To this end, first observe that
each region Qi(z), can be partitioned into eight
different blocks Q;bc(m) where

o= 1 if x>0
Tl -lifxza <0

- 1 if sign(oi(x)) >
T =1 if sign(oi(z)) <
1 if sign(oita (m)) >0
T -1if sign(oiy1(z)) <0

t=1,...,v — 1. Note that, in view of the choice
of the a;’s, 9 ; _;(z) and QL _,; ;(z) are always
empty.

Associated with Qa pe(®) i =1,...,v, it is also
possible to define the Alabc( ), i = 1,...,v,
vicinity of the switching boundaries p; inside the
blocks QZ p..(7) as follows

Afz,b,c - {.’IJ € Qa b, c( )
(J2| > 01) N (||l — @il] < 82)}
fori = 1,...,v, where é; and J> are arbitrarily

small positive constants. Moreover, denote with

UAabc

a=1,b=1,c=1,i=1,...,
of the switching boundaries.

Now let K;, i =1,...,

v, the Al (z) vicinity

v, be positive values such

that
|2'P; f(2)] ;
—— 2 VzeA(r 10
b (@ (o)
¢t =1,...,v. Finally, assume that the control gains
K;,i=1,...,v, of the hybrid control law (7) are

chosen as follows

K, >max{f( Kl} i=1,...,v (11

4. STABILITY AND CONVERGENCE
ANALYSIS

The stability of the origin of the closed-loop sys-
tem (1), (7), (11) is now investigated by analyzing
the behavior of the state trajectories in the vicini-
ties A?(x) of the switching boundaries. For the
sake of clarity, the analysis is carried out in the
particular case of v = 2, so that ||@;, || — oo, for
i=1, ||| =0, fori=v+1=3, and ¢ := @,
for ¢ = 2. Note, however, that the following results
can be easily extended to the case v > 2.

A reaching condition is analyzed with reference
to @ in order to establish which parts of it exerts
an attractive or repulsive action on the controlled
state trajectories. To this end, note that in view of
definition (3), system (1), and the hybrid control
law (7), in A¥(x), i = 1,2, it results that

¢(z) = 22'Pf(x) — 22' Pg; Kisign(oi(x))(12)

P := P,. Moreover, in A
and, in view of (1 ) (11)

sign(z' Pg1 K1sign(oy

b.c(2), one has p(z) >0

(z))) = sign(ab) (13)
and
sign(p(z)p(x)) = —sign(ab) (14)
In contrast, in A2, (z), one has p(z) < 0,
sign(z' Pgy Ky sign(oa(x))) = sign(ac) (15)
and
sign(p(z)p(x)) = sign(ac) (16)

Three different cases can occur:

case 1 : when ab = —1 and ac = -1, p(z)p(x) >0
in A}, .(z), while p(z)¢(z) < 0in A, (),
so that the state trajectories move from
Aibc( )tO Aibc( )

case 2 : when ab = 1 and ac = 1, p(z)¢(z) < 0 in
A}lbc( ), while p(z)p(xz) > 0 in AZbc( ),
so that the state trajectories move from
Aa,bc( )tO Aabc( )

case 3 : when ab = —1 and ac = 1, p(z)p(z) > 0
both in Al, (z) and in A2, (). Hence,

the state trajectories cannot go through the
switching boundary ¢, which is “repulsive”
both in A}, (z) and in A2 , ().

The following results can be proved in a row.



Proposition 1. The trajectories of the hybrid
closed-loop system do not have any limit cycle.

Proof: First observe that limit cycles entirely in-
cluded into Q' or Q2 cannot exist in view of the
globally stabilizing property of the SMC control
law (7) in Q! and Q2, respectively, guaranteed by
the choice of the gain (11). Hence, a limit cycle,
if any, should belong to both Q! and Q2. In par-
ticular, it should exit from ©* through A%, | | (z)
and exit from Q' in A}, () (limit cycles of type
1). Alternatively, it should exit from Q2 through
A7, () and exit from Q' in AL, , (2)
(limit cycles of type 2). Any other possibility is
forbidden, since it would imply that the closed tra-
jectory intersects the sliding manifold oy (z) = 0
in Q', but in this case the trajectory would follow
this sliding manifold until it reaches @. As for
the presence of limit cycles of type 1, note that
every trajectory starting in Q2 and passing in Q!
through A? | | | () should cross in Q' a level line
of the Lyapunov function o7 in the forbidden
direction. The same arguments can be used to
show the unfeasibility of the limit cycles of type
2. A

Proposition 2. Any trajectory moving from Q2 to
Q! reaches in Q! the sliding manifold oy (z) = 0.

Proof: This is a direct consequence of the fact that
every trajectory starting in Q2 and passing in Q!
through A? | | | () should cross in Q' a level line
of the Lyapunov function o7 in the forbidden

2
direction. A

Proposition 3. The origin of the state space is a
globally asymptotically stable equilibrium point
for system (1) controlled by the hybrid SMC strat-

egy (7), (11).

Proof: Assume first that z(0) € Q2. Then, two
cases are possible.

A1 The trajectory starting from z(0) reaches the
sliding manifold o2 (z) = 0 and goes to the
origin with the dynamics imposed by the
choice of ay.

A2 The trajectory leaves Q2 and enters Q!. In
view of Proposition 2, it reaches the sliding
manifold oy (z) = 0; then, the case Bl below
holds.

When z(0) € Q!, one of the following two cases
holds.

B1 The trajectory starting from x(0) reaches
the sliding manifold oq(xz) = 0; since, by
assumption, a; > as, the trajectory enters in

02 and reaches the sliding manifold oy (z) =
0 (case Al). Note that in this last case,
it cannot exit Q% without passing through
(o) (Z’) =0.

B2 The trajectory enters 22 and one of the cases
A1-A2 applies.

We finally have to prove that the overall state
trajectory goes to the origin in finite time. To this
end, by virtue of the choice of the control law (7),
and, in particular, of the control gains in (11),
classical results of the theory of SMC guarantee
a finite run time to reach the sliding manifolds
oi(x) =0,i=1,2, and to follow them up to the
origin (Utkin, 1992). A

5. SIMULATION EXAMPLE

As an example, the proposed hybrid SMC strategy
with event—driven reduction of the control gain is
applied to the following system

{ & = (17)

s = —x2 — 3sin(z) +u

Three regions Qf, i = 1,...,3, are delimited by
the switching boundaries

@o @ x5 + 43 — 144 =0 (18)
@3 a3 +4das—16=0

apart from oo and 0.

Associated with the Qs, the following sliding
manifolds

o1(x) =xo +4x1 =0
0’2(1’) = T + 21‘1 =0 (19)
0’3(1’) = T + 11‘1 =0

and the corresponding control gains K; = 70,
K, = 50, K3 = 10 are selected. The state
trajectory of the controlled system, starting from
2(0) = [—6 3]" and moving to the origin of the
state space through a sequence of “reaching” and
“sliding” phases, is shown in Fig. 1. In Fig. 2, the
evolution of the ¢;’s versus time is depicted, while
the switched control signal u with gain reduction
is illustrated in Fig. 3.

6. CONCLUSIONS

A hybrid SMC strategy has been presented in
the paper. Sliding mode behaviors are suitably
generated so that they have finite duration when
they occur on sliding manifolds which are sep-
arated from the origin by switching boundaries.
Alternatively, they asymptotically steer the con-
trolled system state trajectory to the origin of
the state space. As a result, the proposed hybrid



Fig. 1. The state trajectory of the controlled
system
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Fig. 2. The evolution of the o;’s
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Fig. 3. The switched control with gain reduction

SMC strategy proves to globally asymptotically
stabilize the origin of the system state space. This
positive stability result is attained in spite of a
control gain reduction, which is driven by the
event of crossing a switching boundary, as the
state trajectory moves through regions closer to
the origin of the state space.
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