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probability of attaining some performance level. The problem setup is that of a standard 
robust H∞ performance analysis of a parameter-dependent system, except that the parameter 
hyper-rectangle (box) shrinks in the analysis in order to accommodate a polytopic 
performance goal that is better than the one attainable for the original parameter box. An 
affine-quadratic, multiconvex approach is applied to reduce the overdesign that is inherent 
in the quadratic approach. A version of the Bounded Real Lemma (BRL) in the form of Bi-
Linear Matrix Inequalities (BLMIs) guarantees a minimum H∞-norm for a prescribed 
probability. These BLMIs are solved using an iterative algorithm. A uniform distribution is 
assumed for the system parameters, according to the uniformity principle. The probability 
requirement is expressed by a set of LMIs that is derived by extending an existing second- 
order cone method; these LMIs are to be concurrently solved with the BRL BLMIs. The 
proposed analysis is demonstrated via a 2-parameter example. Copyright  2002 IFAC  
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1. INTRODUCTION 

Robust control theory is usually associated with worst- 
case design; namely, some performance measure (e.g., 
the H∞-norm of the closed-loop system) is required to be 
satisfied for all possible combinations of the uncertain 
parameters of the system. Worst-case H∞ design has 
many variants: real bounded uncertainties were 
considered by (de Souza, et al., 1990), while the µ  
synthesis/analysis approach was developed by (Doyle, 
1982). The H∞ polytopic uncertainties approach (e.g., 
(Boyd, et al., 1994)) is the most popular by now; it 
assumes that the system matrices belong to a convex 
domain. Requiring quadratic stability, i.e. using a single 
Lyapunov function to investigate system stability and 
performance throughout the parameters space, one can 
perform analysis and synthesis by LMIs. The robust 
worst-case stability check (e.g., by µ  analysis (Packard 
and Doyle, 1993) or by other extreme point methods 
(Kang and Barmish, 1993)) can be extremely 
conservative, especially for a large number of uncertain 
parameters. This conservatism stems from the fact that 
worst-case methods require the performance criteria to 
be satisfied for all possible parameter combinations 
regardless of their probability, even for those that can 
occur with a very low probability.  
The common engineering practice, however, is to 
associate the required performance with some desired 
probability of attaining that performance. For example, a 
low-cost Unmanned Air Vehicle (UAV) specification 
might require that the standard deviation of the UAV’s 
altitude-hold error (due to measurement errors, 
turbulence, gusts, aerodynamic data uncertainties, etc.) 
should be less than 100 feet with a 90% probability. By 
introducing appropriate dynamic weights, the latter 
specification may be formulated within a H∞ setup: 
associating the required probability (0.9) with the H∞-
norm of an augmented system (which includes the 
weights) enables complying with the probabilistic 

specification. The above prevalent engineering practice 
motivates the present work, in which a probabilistic 
(rather than a deterministic worst-case) approach to 
robust H∞ analysis is adopted. Note that the present 
work is not part of the recent randomized algorithms 
approach (Polyak and Tempo, 2001; Vidyasagar, 2001): 
no random samples of the uncertain system are required, 
and the desired probability is directly guaranteed. 
When considering probability, the issue of the 
probability distribution of the unknown parameters of 
the system inevitably arises. When the parameters’ joint 
probability density function is known, common sense 
dictates that it should be used in the analysis. However, 
in reality this is rarely the case and consequently the 
question of finding the worst-case distribution function 
(supported for specified intervals of the unknown 
parameters) usually arises. In (Barmish, 1994) and 
(Barmish and Lagoa, 1996) it was shown, using the 
concept of confidence degradation function and the 
truncation and uniformity principles, that the uniform 
distribution is the most conservative distribution among 
the common (unimodal) density functions. Therefore it 
is assumed throughout the present paper that the 
uncertain parameters are uniformly distributed. 
The notions of performance (e.g., desired disturbance 
attenuation level, γ ) and probability (of exceeding that 
performance, p ) can be combined, in a robustness 
analysis context, in the following two ways:  
1)  Given ,γ  find the maximum probability p  by which 

γ<∞zwT  can be assured, namely 

{ }{ }pMax
p

≥<∞ γzwT Prob . 

Here zwT  denotes the transference from the exogenous 
disturbance w  to the minimized output vector z . 
Obviously, the prescribed γ  should be smaller than the 
minimum γ  attainable in the associated standard H∞ 
problem.  
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2)  Given 10 ≤< p , find the minimum γ  for which p  
can be assured, namely  { } }{ zwT Prob pMin ≥<∞ γ

γ
. 

When p =1, the standard H∞-norm minimization 
problem is recovered. 
The problem formulation in Section 2 adopts the second 
interpretation; that is, the best performance that can be 
guaranteed with a given probability is sought. However, 
the method developed in the sequel is applicable to both 
interpretations and a minor modification will produce 
the mechanism for solving the first problem. Sections 3 
and 4 present the quadratic solution to the problem 
stated in Section 2. Section 3 contains the conditions for 
quadratically attaining the required best robust 
performance, which depend on the unknown vertices of 
a truncated parameter box. The resulting matrix 
inequalities turn out to be bilinear in the unknowns, and 
an iterative solution algorithm is proposed in which each 
step involves tractable LMIs. Section 4 introduces a new 
method for obtaining the required volume of the 
truncated parameter box (corresponding to the specified 
probability) via LMIs. These LMIs are derived using an 
extension of an existing second-order cone method. The 
LMIs of Sections 3 and 4 should be solved 
simultaneously to attain the best performance in the 
preassigned probability. Section 5 presents an affinely 
quadratic/multiconvex approach to the performance 
requirement, which relaxes that of Section 3. A two- 
parameter example is given in Section 6, which 
demonstrates the applicability of the proposed analysis 
method by comparison with a Monte-Carlo simulation. 
The notation is fairly standard. Throughout the paper the 
superscript “T” stands for matrix transposition, 

nℜ denotes the n- dimensional Euclidean space, mn,ℜ  
is the set of all n by m real matrices, and 0>P  
( 0≥P ) for nnP ,ℜ∈  means that P  is symmetric and 
positive definite (positive semi-definite, respectively). 
Prob{e} is the probability that event (or condition) e 
occurs (or is satisfied). A uniform distribution of a scalar 
random variable between a  and b  will be denoted 

],[ baU . },,2,1{ lΠΠΠ L  stands for the set 
comprising of lΠΠΠ ,,2,1 L . ijQ  are the (matrix) 
entries of the block matrix Q , and }{ iiQdiag  is a 
diagonal block matrix with elements ijQ . zwT is the 
disturbance-to-output transmission matrix of a linear 
system, and ∞|||| G is the standard H∞-norm of G . RHS 
(LHS) is the right (left)-hand side of an expression. 

2. PROBLEM  FORMULATION 

Consider the class of uncertain linear systems that are 
described by the state-space equations 

,)()( wBxAx θθ +=&    wDxCz )()( θθ +=  (1a,b) 

where LT
L ℜ∈= ],,,[ 21 θθθθ L  is the uncertain 

parameters vector, and where the dependence of the 
system matrices on the parameters is affine:  

.)(
1

0110 i

L

i
iLL AAAAAA θθθθ ∑+=+++=

=
L     (2) 

with similar expressions for the other three system 
matrices. The matrices 0A , 0B , 0C , and 0D  may be 
thought of as those that define the nominal system; in 

such a case the variables iθ  will represent the deviations 
of the system parameters from their nominal values. The 
parameters iθ  may also represent the "full" system 
parameters, in which case the nominal system is 
described by )( nominalθA  etc. All the matrices iA , iB , 

iC , and iD , Li ,,1 L=  are known; those that 
correspond to 1≥i  tend to have low rank (since each 
parameter usually influences only few entries of a 
system matrix). 
All Lii ,,1, L=θ  are assumed to be scalar, mutually 
independent, random variables, each drawn from an 
unknown probability distribution supported in the finite 
range ],[ ii βα ; that is, iβ  and iα  are the (known or 
assumed) extremal possible values of iθ : 

[ ] .,,1,, Liiii L=∈ βαθ   (3) 

If the iθ  are interpreted as deviations from the nominal 
parameters, it can be assumed that all the ranges 

],[ ii βα  are symmetric about 0. Thus, the parameter 
vector lies in a L -dimensional hyper-rectangle B  
(“box”). The polytope B  has L2  vertices (“corners”); 
each vertex Bv  is defined by a parameter-vector whose 
entries are all extremal parameter values, that is 

[ ] { } Liv iii
T

L ,,1,,,,,, 21 LL =∈= βαθθθθB . The set 
of the L2  vertices Bv  of ,B  which plays an important 
role in what follows, is denoted by 

[ ] { }{ }.,,1,,,,, 21 LiV iii
T

L LL =∈= βαθθθθB    (4) 

Note that since B  is a hyper-rectangle, not a general 
polytope, its L2  vertices are completely defined by the 
L  pairs { } Liii ,,1,, L=βα . 
Given a required probability 10 ≤< p , our purpose is 
to find the minimal (best) disturbance attenuation level 

0>γ  for which the inequality 

pTzw ≥<∞ }||{|| Prob γ      (5) 

still holds. 

3. QUADRATIC SOLUTION 

The core of the solution is the realization that both the 
required probability and the best disturbance attenuation 
level are attained in some truncated parameter box TB . 
“Many” such TB ’s may satisfy the required probability, 
and the one that provides the best polytopic performance 
is sought. This yet to-be-determined diminished box is 
characterized by Liba iiiii ,,1,],[],[ L=⊆∈ βαθ ; 
that is, each vertex is [ ] ,,,, 21

T
LT

v θθθ L=B  
{ } Liba iii ,,1,, L=∈θ , and the set of L2  vertices of 

TB  is denoted 

[ ] { }{ }.,,1,,,,, 21 LibaV iii
T

LT
LL =∈= θθθθB   (6) 

The vertices 
T

vB of TB  are yet unknown; i.e., ia and 
ib  are yet to be determined for all Lii ,,1, L=θ  in 

such a way that the probability of TB∈θ  is at least p  
while the polytopic γ  associated with TB  is minimal.  

The presentation of the solution begins with a discussion 
of the performance (disturbance attenuation) aspects. 
The analysis of the probability aspects is deferred to the 
next section. 



Applying over a polytope a parameter-independent 
quadratic Lyapunov function xPxx T

0)( =Φ  (where 0P  
is constant), it is well known that a necessary and 
sufficient condition for γ<∞|||| zwT  throughout TB  
under such a function is the existence of 00 >P  that for 
all TB∈θ  satisfies the following BRL inequality: 
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    (7) 

Due to the linearity of the system (1), the affinity of the 
system matrices in iθ , and the convexity of (7) for a 
given parameter polytope, the latter is satisfied for all 

TB∈θ  iff it is satisfied at the L2 vectors θ  comprising 

T
VB  (Boyd and Yang, 1989). The unknowns in (7) are, 
therefore, the L2  vectors θ  defining 

T
VB (in fact, the 

L  pairs { } Liba ii ,,1,, L= ), the matrix 0P , and the 
minimal disturbance attenuation level γ . 
Since (7) contains products of 0P  and θ  it is not 
generally convex - it is bilinear in these variables. 
However, note that (7) is indeed convex in γ,0P  for 
fixed θ  and in γθ ,  for fixed 0P  (since the system 
matrices are affine in θ ). Therefore, it is proposed to 
tackle (7) by the following iterative algorithm based on 
alternating steps of solving (7) for  γ,0P  and  γθ ,  
while minimizing γ . Note that the LMI/s that express 
the probability requirement (see next section) are to be 
simultaneously satisfied.  
Algorithm 1 
Step1: Solve (7) at BV  for γ,0P  while minimizing γ .  
Remark 1: This step finds the minimum γ  associated 
with BB =T  as in the usual (deterministic) polytopic 
analysis, where the performance requirement is satisfied 
with 1=p . 
Remark 2: When the system is not quadratically stable at 

BV  step 1 fails and the algorithm cannot proceed. 
However, the system may still be quadratically stable at 
some 

T
VB . Possible remedies are: 1) Start from some 

arbitrary  box “slightly” smaller than B . 2) Start from a 
“small” arbitrary TB  that doesn’t provide the required 
probability; Step 2 will expand it towards the required 
probability, if the 0P  found for the initial TB  can 
“cope” with a larger parameter-box.  
Step 2: Solve (7) for γθ ,  while minimizing ,γ  with 0P  
found in the previous step; i.e., fix the last 0P  and 
simultaneously solve (7) at 

T
VB  for Liba ii ,,1,},{ L=  

and γ  while minimizing γ . 
Step 3: Repeat step 1, replacing BV , Bv , and B  by 

T
VB , 

T
vB , and TB , respectively.  

T
VB is defined by the 

Liba ii ,,1,},{ L=  found in the previous step. 
Step 4 is a repetition of step 2, etc. The iterations 
continue in this manner until some convergence criterion 
is satisfied. Since the function ( )0, PV

TBγ  is bounded 
from below and monotonically non-increasing, it is 
locally convergent. Global convergence seems difficult 
to establish. 

4. THE PROBABILITY LMIS 
Inspired by the uniformity principle of (Barmish, 1994), 
which implies that the uniform distribution is the right 
choice for robustness analysis (see Remark 9), the 
uniform distribution ],[ iiU βα  is henceforth assumed 
for all iθ . Thus, the probability of each iθ  being in 
some truncated range ],[],[ iiii ba βα⊆  is simply 

)/()( iiii ab αβ −− ; and, since all iθ  were assumed 
mutually independent, the probability of TB∈θ  is 

.}],[{Prob
1 1
I
L

i

L

i ii

ii
iii

ab
ba

= =
∏

−
−

=∈
αβ

θ  (8) 

Note that this probability is merely the volume-ratio of 
TB  and ,B  and that only the differences ii ab −  count. 

The requirement to exceed some desired probability p  
(i.e., (5)) now takes on the form  

∏
=

∏
=

−≥−
L

i ii
L

i ii pab
11

)()( αβ      (9) 

where the RHS is completely known. Expressing (9) as 
an LMI for 2,1=L  is simple. For 1=L  the LMI is 

)( 1111 αβ −≥− pab . For 2=L  inequality (9) is 
))(())(( 22112211 αβαβ −−≥−− pabab , and by 

defining its RHS as p  ( 0>p ) this inequality can be 
directly cast (using Schur complements) in the LMI 

.0
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11 ≥
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           (10) 

For ,2>L  however, representing (9) as an LMI in all 
ii ab −  is not straightforward. The LMI representation 

of (10) is obtained using an extension of the multi three- 
dimensional second-order cones representation of the 
geometrical mean function described in (Nestrov and 
Nemirovskii, 1994). The method given there applies to 

qL 2=  only, where q  is any positive integer; this is a 
significant limitation in practical situations. The theorem 
below removes the above restriction - it applies to any 
positive integer L  - and presents a clear, recursive way 
of constructing the desired LMIs. The theorem addresses 
the following problem, which is nothing but a 
reformulation of (9) with iii aby −=  and with 

∏
=

−=
L

i iipp
1

)( αβ : 
Problem 0Π :  Given a scalar 0>p  and any positive 
integer ,L  find L  scalars iy ,  Liyi ,,1,0 L=>  such 
that 

  .
1

py
L

i i ≥∏
=

         (11) 

0Π  is meaningful only when iy  are constrained also 
otherwise; and, since in our case the other constraints 
are in LMI form, it is desirable to obtain a 
characterization of 0Π  in LMI form. 
The next lemma offers a one-step reduction of 0Π ; the 
complete solution of 0Π  will consist of a series of 
successive applications of this lemma. 

Lemma 1  Problem 0Π  is equivalent to the following 
auxiliary problem 1Π : find 1m  positive scalars 

1,1 ,,1, mjs j L=   (the first subscript of js ,1  and the 
subscript of 1m  stand for 1Π ) such that  

.
1

1
21

,1∏
=

≥
m

j j ps            (12) 



When L  is even, 21 Lm =  and  
.,,1, 1

2
,1212 mjsyy jjj L=≥−      (13) 

When L  is odd, 12)1(1 +−= Lm  and  

1,,1, 1
2
,1212 −=≥− mjsyy jjj L        (14a) 

.2
1,1 mL sy ≥       (14b) 

Note that each of the inequalities of (13) or (14a) can be 
put in the simple scalar 2x2 LMI form (see (10))  

0
2,1

,112 ≥






 −

jj

jj

ys
sy

          (15) 

and so can also (14b), by regarding 1 as a second factor 
on its LHS. The lemma replaces (11) by (12), adding a 
set of 1m  LMIs requiring 1m  auxiliary unknowns. Note 
that the number of factors in the LHS of (12) is about 
half the number of factors in the LHS of (11). Now, 
since (12) has the same structure as (11), the same one-
step reduction lemma can be applied to (12), creating 
problem 2Π  which replaces (12) by a similar inequality 
(however with 41p  on its RHS). This requires 2m  
additional unknowns 2,2 ,,1, mjs j L=  and 2m  
additional LMIs like (15), e.g. 

.0
2,1,2

,212,1 ≥






 −

jj

jj

ss
ss

          (16) 

This successive reduction process is exhausted when 
arriving at an expression similar to (12) that has only 
two unknowns on its LHS, and hence can itself be 
expressed as a LMI similar to (16). The above reasoning 
is summarized in the following theorem. 
Theorem 1  Problem 0Π  is equivalent to the series of 
auxiliary problems lkk ,,1, L=Π , where l  is the 
smallest positive integer such that Ll ≥+12 .  Each 
problem kΠ  is consecutively obtained from its 
predecessor 1−Πk  by using Lemma 1. 
Theorem 1 states, in other words, that in order to solve 
(11) for iy  one should simultaneously solve the 
collection of LMIs (of the type (15) or (16)), created by 
a successive reduction of (11) according to Lemma 1, 
for iy  and all the auxiliary unknowns defined in the 
process. Note that the probability LMIs are in fact 
formulated with ii ab − ; ia and ib  link them to 

T
VB of 

the BRL inequalities. 
Remark 3: The last auxiliary problem, lΠ , necessarily 
addresses  

( ) .21
2,1,

l
ll pss ≥          (17) 

Remark 4: In lkk ,,1, L=Π , p  explicitly appears 
only once, in lΠ ; and, since l  is known, the RHS of 
(17) can be redefined as 2)~( p  - thus making the above 
collection of LMIs linear in the probability variable p~  
(see (13), (15)). This fact enables conversion of the 
proposed solution for the performance maximization 
problem into a solution for the probability maximization 
problem merely by minimizing p~−  instead of γ . 
Remark 5: When  qL 2=  and q  is a positive integer, the 
above theorem is equivalent to the second order cones 
representation of the geometrical mean function given in 
(Nestrov and Nemirovskii, 1994). 

Now that both components comprising the quadratic 
solution to the problem presented in Section 2 have been 
introduced (the BRL inequalities of Section 3 and the 
probability LMIs of the current section), some 
concluding remarks on the above solution are in order. 
Remark 6: Note that the probability LMIs need be 
solved (simultaneously with the performance 
inequalities) only in the even-numbered steps of 
Algorithm 1; in the odd-numbered steps 

T
VB  is not 

changed.  
Remark 7: Running the above mechanism with several 
values of  10 ≤< p   enables one to sketch the overall 
tradeoff between performance and probability for a 
given system. 
Remark 8: The quadratic approach (same 0P ) is quite 
restrictive, especially when “many” parameters are 
involved or when their ranges are “large” (causing 
significantly different system behavior over BV ).  
Remark 9: The solution is inherently conservative. The 
first conservatism source is the choice of uniform 
distribution, in the spirit of the uniformity principle of 
(Barmish, 1994) and (Barmish and Lagoa, 1996), which 
states that  

{ } { }goodugoodf

Ff
Min Θ∈=Θ∈

∈
θθ ProbProb   (18) 

where, roughly speaking, Θ  is the parameters space, 
goodΘ  is the part of Θ  where the system’s performance 

is considered good, uθ  is the random parameters vector 
uniformly distributed over Θ , and fθ is that vector 
distributed according to any distribution f  belonging to 
the family F of unimodal distributions that are non-
increasing with the distance from the mode. In simple 
words, the uniform distribution provides the lowest 
probability of the system being “good”. The second 
conservatism source is the simply-connected nature of 
the TB ’s considered; any polytopic approach would 
ignore the fact that in the complementary part(s) of ,B  
i.e. ,TBB −  there may well be other (separate) areas in 
which the desired γ  is also attained. Thus, the true 
probability of attaining γ  is greater than that 
represented by the largest simply connected polytope 

TB . 

The following section improves the above solution by 
relaxing its strictly quadratic element; it is replaced by 
an affinely quadratic approach. 

5. AFFINELY QUADRATIC SOLUTION 

The concepts of Affine Quadratic Stability (AQS), AQ 
H∞ Performance (AQP), and multiconvexity have been 
introduced in (Gahinet, et al., (GAC) 1996). These 
robust stability/performance tests extend the standard 
notions of quadratic stability and performance by 
introducing a Lyapunov function xPxx T )(),( θθ =Φ  
with affine dependence of )(θP  on the uncertain 
system’s parameter vector θ . Sufficient conditions for 
AQS/ AQP in the form of a finite set of tractable LMIs 
is obtained by adding a “multiconvexity” constraint on 
the above Lyapunov function. The resulting AQS LMI 
test is less conservative than quadratic stability and 
compares favorably with µ  analysis. 



AQP is defined as follows (the parameter time- 
dependence aspects of (GAC, 1996) have been omitted): 

Definition: The system (1)-(2) has affine quadratic H∞ 
performance γ  (AQP) in TB  if there exist 1+L  
symmetric matrices LPP ,,0 L  such that  

0:)( 110 >+++= LLPPPP θθθ L          (19) 
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0)( <θM       (20b) 

are satisfied for all TB∈θ . In such case, the system is 
asymptotically stable and 

22 LL wz γ<  for all TB∈θ  
and for all 2L -bounded input w  (provided that 

0)0( =x ). 
Adding a multiconvexity requirement enables obtaining 
a tractable sufficient test for AQP in the form of a finite 
set of LMIs: 

Theorem 2  The system (1)-(2) has AQP γ  in TB  if 
)( meanA θ  is stable and there exist 1+L  symmetric 

matrices LPP ,,0 L  which satisfy 

Li
PB

BPAPPA

i
T
i

iiiii
T
i ,,1    , 0

0
L=≥











 +      (21) 

T
VM B∈∀< θθ 0)(            (22) 

where meanθ  is defined by 2/)( iii ba +=θ , 
Li ,,1 L=  and )(θM  is defined in (20a),(19). 

The term “multiconvexity” refers to the inequalities 
(21), or to 0≥+ iii

T
i APPA  in the case of AQS, which 

impose convexity for each iθ  separately; this is less 
demanding than convexity with respect to the vector θ . 

Replacing the quadratic approach presented in Section 3 
by an affinely quadratic approach consists of replacing 
(7) by (21),(22), where the discussion following (7) 
concerning the appearance of the unknowns applies also 
here, except that the single unknown matrix 0P  is now 
replaced by the set of unknown matrices LPP ,,0 L  
included in )(θP . This fact compounds the 
computational difficulty relative to the quadratic case, 
since even for fixed matrices LPP ,,0 L  (corresponding 
to the even-numbered steps of Algorithm 1)  the 
inequality (22) is not convex in γθ ,  because of the 
products )()( θθ AP and )()( θθ BP . Note that the actual 
unknowns are the L  pairs { } Liba ii ,,1,, L= . 
It is proposed to numerically solve the above AQP 
formulation by an iterative algorithm denoted  
Algorithm 2, which is identical to Algorithm 1 except 
for the following modifications: 

1. Solve the array of LMIs (21),(22) instead of an array 
of (7). 
2. In the odd-numbered steps solve for γ,,,0 LPP L  
rather than for γ,0P . 
3. In the even-numbered steps fix LPP ,,0 L obtained in 
the previous step. 

4. In the even-numbered steps, where (the minimal) γ  
and { } Liba ii ,,1,, L=  are sought, “convexify” the 
search for { }ii ba ,  by fixing all their cross-terms (like 

jiaa ji ≠, ) at their values from the previous step. To 
spell out this essentially simple remedy to the non- 
convexity of (22) in ,θ  consider the (1,1) entry of (22): 
note that 0)()()()( <+ θθθθ APPA T  can be cast as 

0)( 000000 <++++ ∑ θθθ QQQAPPA T

j jjj
T    (23a) 

or  
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Qdiag

R
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T
,,1,0

}){( 1 L=<

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− −θ
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where ,Q  w  and 00 , jj QQ  are defined by 

0≥+= iii
T
iii APPAQ   (24a) 

jiAPPAQ ijj
T
iij ≠+= ,      (24b) 

∑
≠

∑ +++++=
ji jijiijj jjj

T QQQQAPPAR θθθ )()( 000000

(25) 
and iθ  denotes iθ  of the previous step. (In (24b), the 
indexes of ijQ  can assume the value 0 to define 

00 , jj QQ .) Currently, there is no proof of convergence 
for this algorithm; nevertheless, it has produced 
encouraging results.  
Remark 10: A strengthened  version of (24a) is used, 
that allows taking the inverses of iiQ  in (23b). (The 
latter are generally non-definite because of the low rank 

iA ’s.)  The inequality (24a) is modified to be a strict 
inequality and ijQ  is added to its LHS, where ,0>iµ  

Li ,,1 L=  are additional optimization parameters; in 
(25) the term ∑ ∈

i iiiii baI },{,)( 2 ωωµ is added. See 
(GAC, 1996), Sec. V.  

6. EXAMPLE 

Consider the system (1)-(2) with 2=L  where  

,
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 ==
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= AAA    

,06.0,06.0,09.0,09.0 2211 =−==−= βαβα   
,]10[ TB =   ,]01[=C    and .0=D  

The four Bode plots of the plant at BV  are considerably 
different from each other; indeed, Algorithm 1 is not 
effective. The minimum γ  computed over BV  by the 
AQP approach (using the Matlab® LMI Toolbox) is 
103.1. The resulting minimum γ  over 

T
VB  for 

,8.0=p  computed by algorithm 2, is 39.95; the 
corresponding parameter-box volume ratio is 0.8, as 
required. Comparison with Monte-Carlo simulation 
(Ray and Stengel, 1993) reveals the inherent 
conservatism in the proposed method (Figure 1): for 
90% of the parameter vectors θ  in B  (rather than 80%) 
the standard minimum γ  is lower than 39.95.  In Figure 
2 the tradeoff between the minimal γ  and p−1  is 
presented, as computed by several applications of 
algorithm 2 and as derived from the Monte-Carlo 
results. Note the tradeoff-line shape and the algorithm’s 
safety margin. 



7. CONCLUSIONS 
The problem of computing the minimum H∞-norm of an 
affinely parameter-dependent polytopic system with a 
given probability has been considered. Adopting the 
uniform distribution as the most conservative p.d.f., as 
implied by the uniformity principle, a solution to this 
problem has been derived in terms of sets of BLMIs and 
LMIs. The BLMIs comprise of a version of the BRL 
using the notion of AQP, and are combined with the so-
called probability LMIs which are derived by extending 
an existing second-order cone method. An iterative 
algorithm has been proposed to solve the BLMIs. 
The results of the proposed AQP algorithm have been 
illustrated via a lightly damped system with two 
uncertain parameters. The algorithm easily converges 
locally, and its results are encouraging.  A substantial 
(60%) decrease of the robust disturbance attenuation 
level has been gained at the cost of only 20% decrease in 
the probability. The overall tradeoff between the robust 
performance and its probability has also been computed. 
A corresponding tradeoff found by a Monte-Carlo 
simulation showed, as expected, some remaining 
conservatism; it may be partly removed by using recent 
results on bi-quadratic performance. Note that a solution 
to the dual problem of probability maximization for a 
given disturbance attenuation level is easily obtained by 
a minute modification of the proposed algorithm. 
The results of the present paper can be extended in more 
than one direction. Allowing correlation between the 
uncertain parameters, non-uniform p.d.f.’s and nonlinear 
dependence on the system parameters can be useful in 
realistic cases. Finally, usage of the proposed methods 
for controller synthesis is obviously an important area 
for further research.  
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Fig. 1  Comparison between Monte-Carlo analysis and 
Algorithm 2 results. 

 
 
 

Fig. 2  Tradeoff between performance and probability: 
Algorithm 2 and Monte-Carlo results. 

 


