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Abstract: In this paper the problem of experimental control of hydraulic actuators
is considered. Experimental results of a backstepping implementation are analyzed
in the context of practical difficulties, mainly the measurements of the acceleration
and pressure difference. A two degree-of-freedom controller is proposed to circum-
vent these difficulties in a framework that takes into account the measurement
and the robustness problems. Simulation results illustrate the main features of
the backstepping and the two degree-of-freedom controllers when applied on a

hydraulic actuator.
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1. INTRODUCTION

Hydraulic actuators provide a high power den-
sity, therefore they are largely employed in in-
dustry. Some examples of applications are the use
of these actuators in vehicle suspensions (Fialho
and Balas, 1998), in construction (Chiang and
Murrenhoff, 1998), in machine tools and in robot
manipulators (Heintze, 1997).

However, hydraulic actuators present a highly
nonlinear behavior, lightly damped dynamics (due
to fluid compressibility) and parameter variations.
These characteristics are an obstacle for applica-
tions that require high performance, for exam-
ple, robot systems (the behavior of manipulators
equipped with hydraulic actuators is dominated
by the dynamics of the hydraulic actuators).

In order to overcome these obstacles, many kinds
of controllers for hydraulic actuators have been
proposed in literature. In (Edge, 1997), a review
of research on the control of fluid power systems
is presented. In (Yao et al., 1998), a backstep-
ping control technique is proposed and simula-
tion results are present. In (Cunha et al., 2000),
a controller that uses feedback linearization and
backstepping methodology is proposed and exper-
imental results are presented. Nevertheless, back-
stepping methodology has two major drawbacks:
the successive derivatives may limit the real time
implementation on a physical system and also, in
physical implementations, it may be difficult to
measure the signals that are needed (in particular,
the acceleration).

In this paper, the design and control of hydraulic
actuators are presented with two main purposes: a



robust control design able to compensate mechan-
ical and hydraulic uncertainties and the problem
of real time implementation. Due to these limita-
tions a two degree-of-freedom controller structure,
which was designed according to the technique
described in (Wolovich, 1995), is used. The results
are compared with the backstepping procedure.

In section 2, both a linear and a nonlinear model of
the hydraulic actuator are presented. In section 3,
the experimental setup is described. Experimental
results obtained with the backstepping technique
are shown in section 4. In section 5, the two
degree-of-freedom controller is proposed. Simula-
tion results are shown in section 6. In section 7,
the conclusions are presented.

2. MODELLING OF A SERVO HYDRAULIC
ACTUATOR

The hydraulic actuator shown in Fig. 1 consists
of a cylinder controlled by a symmetrical critical-
center 4-way servo valve. In this figure, Ps is the
supply fluid pressure (supplied by a high-pressure
fluid pump, not shown), Py is the return pressure
(that returns to a reservoir, not shown), P; and
P are the pressures in cylinder chambers 1 and
2, respectively, V3 and V5, are the volumes in
chambers (and lines) 1 and 2, respectively, Q7 is
the fluid flow from the servo valve to chamber 1,
Q@ is the fluid flow from chamber 2 to the servo
valve, M is the mass coupled to the actuator, B
is the viscous friction coefficient, A is the cylinder
piston cross-sectional area, u is the control input
(for example, voltage applied to the servo valve),
y is the actuator piston position and Fi, is an
external force acting on the system.
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Fig. 1. Servo Hydraulic Actuator

2.1 Nonlinear Model

The nonlinear modelling of this system is de-
veloped by many authors (see (Watton, 1989;

Heintze, 1997)) and the following description is
obtained:

Mijj+ Bj = APy + FL (1)
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where [ is the fluid bulk modulus, PA = P; — P is
the pressure difference in the cylinder, V = V1 +V5
is the total fluid volume and K is a hydraulic
constant. The bandwidth of the valve is assumed
to be much higher than the bandwidth of the
actuator, therefore valve dynamics are neglected.

2.2 Linearized Model

A linearization of the nonlinear model is necessary
in order to apply the two DOF control design
technique. The system is linearized around the
origin, (y ~ 0), thus it is possible to make the
assumption that S\ A—

(-G~ Y
Also, considering that in practical applications
PAn < %Ps., an approximation of the square
root in Eq. 2 by a first order Taylor series is

VPs = sgn(wPa ~ VT (1-sen(w) gz ).

Finally, defining the constants Kq

3

= K
(known as the flow gain) and K. = 5 \/u— (known

as the flow-pressure gain), the hydraulic actuator
linearized model is obtained:

u(s) + 4 (s + 155 Fis)
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3. EXPERIMENTAL SETUP

In this section, the particular system where the
controller experimental implementation was car-
ried out is described. This hydraulic system is
installed on LASHIP (in Federal University of
Santa Catarina, Brazil). The experimental setup
consists of a double acting cylinder, a proportional
valve BOSCH NG6 and its electronic card, posi-
tion and pressure transducers, temperature trans-
ducers in each cylinder chamber, an acquisition
and controller board DS1102 and a computerized
hydraulic power and conditioning unit, which is
responsible for maintaining the fluid at the re-
quired conditions.

The nominal parameters of the system are given
in Tab. 1. These parameters were obtained from
manufacturers and experimental data.



Table 1. Nominal Parameters

Parameter Nominal Value
M 20.66 kg
B 316 Ns/m
A 7.6576 * 104 m?
1% 9.5583  10~* m?
g 109 N/m?
Pg 107 N/m?
K 6.8747 + 10716 m% /VsN
Kq 2.0624 x 10~4 m3/Vs
K 6.5219 * 1078 m*/Vsv/N

4. BACKSTEPPING CONTROL TECHNIQUE

In (Cunha et al., 2000), a controller was de-
signed using feedback linearization and backstep-
ping methodologies. The main results obtained in
that work are reproduced in this section.

The backstepping control law is given by:

(%) —(Ay)? .

Aj+ ()A%(Myff’) + Bija — ua) @
u =

K/ Ps — sgn(u)Pa
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¢ (APA — Mijg — Bija + ¢171 + ¢2)) (5)

where yq is the desired trajectory for the output,
9 = y — yq is the trajectory tracking error and ¢,
2, P22, p12 and c are constants to be determined
according to the backstepping methodology. The
control input u is responsible for linearizing Eq. 2
and wu, is the integrator backstepping control law.

For the particular system presented in section 3,
the constants were determined to be ¢, = 3 % 10,
¢9 = 10500, p1a = —500, pes = 1.4 % 10* and
¢ = 500. The experimental results are presented
in Fig. 2 and Fig. 3. The system response presents
good overall performance. The output tracks ac-
curately the desired trajectory! and the error is
not significative.

In order to implement the backstepping controller,
the signals that have to be measured (directly
or indirectly) are position, velocity, acceleration
and pressure difference. For practical purposes the
measurement of acceleration and pressure differ-
ence is not desired. In particular, the acceleration
obtained from numerical differentiation of the ve-
locity can lead to bad results due to the presence
of noise.

An efficient way to circumvent this problem is
to design a controller with similar performance
as the backstepping employing a reduced number
of measured signals. It is possible to achieve this
goal with a linear control approach. As stated in
(Edge, 1997) and other authors, the linearized

1 The piston moves from one position to another according
to polynomial —2t7 4 7t6 — 8.4t° 4 3.5t%.
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Fig. 2. Trajectory Tracking - Backstepping Con-
troller
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Fig. 3. Tracking Error - Backstepping Controller

model, Eq. 3, has a single pole in the origin
and two complex conjugate poles badly damped.
Classical controllers, in general simpler to prac-
tical implementation, introduce poles and zeros
in the closed-loop that do not change appropri-
ately the location of complex conjugate poles.
Even when the poles can be changed appropri-
ately as in a PID controller design, the robustness
requirements are hardly achieved. Consequently,
two degree-of-freedom technique is a practical way
to synthesize a controller to obtain high system
performance and accurately perturbation rejec-
tion.

5. TWO DOF CONTROLLER

The two DOF (degree-of-freedom) controller is a
linear controller. It allows the closed-loop system
to maintain a desired response performance while
varying the loop performance (this means that it
is possible to improve robust stability, disturbance
rejection and noise attenuation, independent of
response performance) (Wolovich, 1995).

Consider a linear system defined by:

y(s) = G(s)u(s) + d(s) (6)



where G(s) = 28 is a rational transfer function,

which is both strictly proper and minimal? and
d(s) is some disturbance signal added to the out-
put. The two DOF controller has the configuration
shown in Fig. 4, where the (n — 1) degree polyno-
mials k(s), h(s) and ¢(s) are to be determined to
achieve the desired closed-loop goals (k(s) must
be monic).

Fig. 4. Closed-Loop System with the 2 DOF
Controller

The closed-loop system is given by:

y(s) =T(s)r(s) + S(s)d(s) + Cls)n(s)  (7)

where T(s) = C(g)(ggs) is the output response

transfer function, S(s) = % is the sensitivity

transfer function, which represents the effect of
the disturbance signal d(t) on the output y(¢) and
C(s) = % is the complementary sensitivity
transfer function, which represents the effect of
the sensor noise 7)(t) on the output y(t). d(s) is
the characteristic polynomial, given by:

5(s) = a(s)k(s) + c(s)h(s) (8)

whose (2n — 1) roots are the poles of the closed-
loop system.

The overall performance of the system depends on
the ability of its output y(¢) to track the reference
input r(¢) while minimizing the effect of both
the disturbance signal d(t) and the sensor noise
n(t) on its behavior. Thus T'(s) should guarantee
that the output response presents some desired
characteristics such as a small settling time and no
overshoot, while S(s) should provide disturbance
rejection (in order to accomplish that, |S(jw)]
should be minimized over the band of frequencies
that characterize d(t)) and C(s) should provide
noise attenuation (|C(jw)| should be minimized
over the band of frequencies that characterize
n(t)). An additional desired characteristic for S(s)
is that ||S]|oc = max,, |S(jw)| < 2 ~ 6dB, ensuring
robust stability with respect to plant parameter
variations - as demonstrated in (Wolovich, 1995).

2 T.e., the plant polynomials a(s) and ¢(s) are coprime and
degla(s)] =n > deg[c(s)] =m.

A choice of arbitrary stable polynomials §(s) and
d(s) (such that ¢(s) = ag(s) and 6(s) = 6(s)q(s))
will cause zero-pole cancellations

e(s)qls) _ ac(s)
3(s) o(s)

T(s) = (9)

Therefore §(s) contains the n poles that define
the nominal output response and §(s) contains
the (n — 1) poles that only affect S(s) and C(s).
Polynomials h(s) and k(s) will be obtained by
solving Eq. 8, the so-called Diophantine equation.

The n poles of §(s) can be chosen using the Linear
Quadratic Regulator (LQR) performance index,
defined by

T = [ (PO +2®)de (10)

where p is an weighting factor. The minimiza-
tion of Juqr implies a desire to minimize both
excessive output y(t) excursions and the control
effort u(t) required to prevent such excursions. A
controller that minimizes the LQR performance
index implies an optimal positioning of the closed-
loop poles (Wolovich, 1995).

In order to choose the n poles of §(s) that min-
imize the LQR performance index (Eq. 10), it is
used the Spectral Factorization Method, described
in (Chang, 1961; Wolovich, 1995). The poles will
be the n negative roots of:

for some real p > 0.

5.1 Two DOF Controller Design

The two DOF controller is designed on the lin-
earized system. The open-loop poles of the system
described in section 3 are 0 and —7.7 £ 345j.

In order to choose the closed-loop poles, a root-
square locus is used. A root-square locus is an
s-plane plot of all 2n roots of A(s) (Eq. 11), as p
varies from 0 to co. The root-square locus of this
system is shown in Fig. 5.

As it can be seen in Fig. 5, the two complex
conjugate poles are far from the real axis. The
system will behave approximately as a first order
system, with some oscillations. The real pole is
chosen to ensure that the 2% settling time g is
0.1s. For a first order system, t; = 47 (where 7
is the system time constant) and the only pole is
given by f%. Thus, the real pole is chosen to be
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Fig. 5. Root-Square Locus of the Hydraulic Sys-
tem

—40. Consequently, p = 2.3 % 10* and the other
poles are —21.4 £ 346;j.

Considering that the external force acting on the
system is constant and its maximum value is 300N
(FL(s) = 222), then d(s) is given by:

p(o
VBTIBRY 5 . B BRY 5 (12)
VM + v S

d(s) =

84 + 83

In Fig. 6, a Bode plot of d(s) is shown. The distur-
bance signal is characterized by low frequencies.
Also, the noise 7(t) in this system is characterized
by high frequencies. Thus, the desired behavior
for S(s) and C(s) considering that they are com-
plementary and not independent is:

) ~ 0 at loww
|S(Jw)| - { ~ 1 at highw (13)

.\ ) =1atloww
Clw)l = { ~ 0 at highw (14)
The polynomial §(s) is chosen to be s? + 110s +
3000 (the poles are —60 and —50). This choice
guarantees an acceptable behavior for S(s) and
C(s) (see Fig. 7). The other polynomials are:

q(s) = 1505 + 16000s + 450000
h(s) = —87s* — 19000s + 450000
k(s) = s + 180s + 13000

6. SIMULATION RESULTS

Both the closed-loop system with the backstep-
ping controller and the closed-loop system with
the two DOF controller were simulated. The re-
sults are presented in Fig. 8 and Fig. 9, corre-
sponding to the output response and the tracking
error, respectively. Both controllers provide good
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Fig. 6. Bode Diagram of d(s) and S(s)
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Fig. 7. Magnitude Diagram of S(s) and C(s)

trajectory tracking, though the output response
obtained with the two DOF controller presents a
small delay (as expect, since this controller was
designed to have t; = 0.1s). The effect of this
delay is also seen in Fig. 9, which presents the
errors. The system controlled with the two DOF
controller presents a bigger tracking error than
the system controlled with backstepping. Never-
theless, the maximum value of this error (= 6 *
10~3m) is only 6% of the maximum value of the
trajectory (= 0.1m), which is not significative for
many applications.

Both controlled systems were also simulated with
other conditions than the nominal ones, in order
to test their performances when parameter varia-
tions and external disturbances occur. In practical
implementations, the parameters that vary the
most are the fluid bulk modulus 3 and the supply
fluid pressure Ps. In simulation, 3 was increased
in 50% and Pg was decreased in 20%. Even with
these changes, both systems presented the same
behavior as the nominal ones, showing robustness
to parameter variation. An external force Fy, of
300N was considered to be acting on the system.
To a step input of 0.05m of magnitude, the results



0.15

0.1F

0.051

Position (m)
o

-0.05f

4
Time (s)

Fig. 8. Trajectory Tracking - Two DOF Controller
and Backstepping

x 10"
6 T T T

— ¢e(t) Two DOF
e(t) Backstepping

Error (m)

Time (s)

Fig. 9. Trajectory Error - Two DOF Controller
and Backstepping

are shown in Fig. 10. The two DOF controller is
able to reject the disturbance, while the backstep-
ping control is not.
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7. CONCLUSION

In this paper, the control of hydraulic actuators
was presented. Two main aspects were considered:
the robustness problem and the practical imple-
mentation problem.

The experimental results show that the backstep-
ping technique is a good way to improve high
performance and to reduce tracking errors for the
considered system. However, the complexity of the
controller leads to some practical restrictions: ac-
celeration and pressure difference measurements.
In comparison to classical controllers, the two
degree-of-freedom controller offers an efficient way
to guarantee robustness and performance, which
are important requirements to practical applica-
tions. Simulations were performed to illustrate the
response of both methods. Further works will be
done to analyze the practical performance of two
degree-of-freedom controller considering parame-
ter variation and friction compensation.
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